Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Tipo de estudo
Intervalo de ano de publicação
1.
Surg Neurol Int ; 14: 269, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37560588

RESUMO

Background: The main objective of this study is to enhance neurosurgeons' anatomical knowledge by providing specific anatomical references of the cavernous sinus (CS). However, it is essential to clarify that our study does not seek to establish an absolute intraoperative rule due to the inherent anatomical variability that must be considered. Methods: Fifty-three cadaveric specimens were procured from the Forensic Institute (Bogotá) and subjected to dissection through an extradural approach. The measurements were taken in two distinct phases. The first phase involved the measurement of various anatomical structures in 25 specimens with respect to the anterior and posterior clinoids. The second phase, which was conducted 5 years later, involved the measurement of the distance between the foramen rotundum and the foramen ovale in 28 specimens using the L&W tools microcaliper. Results: In 25 specimens, a perpendicular imaginary line was drawn from the lateral tip of the anterior clinoid to the floor of the medial fossa. This facilitated access to the Parkinson's triangle, which is located between the IV cranial nerve and the ophthalmic V1 nerve, revealing a constant distance of 5 mm between the lateral tip of the anterior clinoid and the IV cranial nerve. Furthermore, in 28 specimens, the mean distance from the foramen rotundum to the foramen ovale was found to be 1.3 cm bilaterally. Conclusion: The rule of five is a valuable tool for comprehensively understanding the anatomy of the CS, providing a reference point for the different normal anatomical structures within the CS.

2.
World Neurosurg ; 169: e9-e15, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36208868

RESUMO

BACKGROUND: Lesions in the ventral striatum region (above the anterior perforated substance) are a challenge for neurosurgeons due to their direct relationship with the lenticulostriate arteries, which difficult the surgical access. The standard approaches for this region include the following: 1) transfrontal approach, 2) transanterior perforating substance approach, 3) transcallosal transventricular approach, and 4) pterional transsylvian-transinsular route. In this study, we aimed to describe a novel anatomical approach through the anterior limiting sulcus of the insula in order to access the ventral striatum. METHODS: We reviewed the literature and performed a detailed dissection of this region by using Klingler's technique with brain specimens injected with silicone, paying special attention to the white fibers and lenticulostriate arteries, and provided a description of an illustrative case of a cavernous malformation. RESULTS: Neuroanatomical dissections showed that the lenticulostriate arteries had an inverted C-shaped anterior concavity, leaving less significant vascular relationships in the depth of the anterior limiting sulcus of the insula. In the case we described, the cavernous malformation was completely resected and the patient was discharged without any neurological deficits. CONCLUSIONS: The transanterior limiting sulcus of the insula approach to the ventral striatum offers a safe access route for selected cases and can be performed on the basis of anatomical references. Three-dimensional understanding of the intrinsic brain architecture and its relationships with vascular structures in this specific area is important and can be acquired mainly through laboratory training.


Assuntos
Córtex Insular , Procedimentos Neurocirúrgicos , Humanos , Procedimentos Neurocirúrgicos/métodos , Tubérculo Olfatório , Dissecação , Artéria Cerebral Média
3.
World Neurosurg ; 166: e933-e948, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948221

RESUMO

OBJECTIVE: The cerebellar interpeduncular region, particularly the middle cerebellar peduncle (MCP) and interpeduncular sulcus (IPS) are significant surgical relevance areas due to the high prevalence of vascular and tumoral pathologies, such as cavernomas, arteriovenous malformations, and gliomas. We defined safer access areas of the MCP and the IPS, according to the surface anatomy, involved vessels, and fiber tracts of the cerebellar interpeduncular region. METHODS: Fifteen formalin-fixed and silicone-injected cadaveric heads and 23 human brainstems with attached cerebellums prepared with the Klingler's technique were bilaterally dissected to study the vascular and intrinsic anatomy. RESULTS: Surface anatomy: The mean length of the IPS was 12.73 mm (standard deviation [SD],2.15 mm), and the average measured angle formed by the IPS and the lateral mesencephalic sulcus was 144.53°. The mean distance from the uppermost point of the IPS to cranial nerve IV was 2.63 mm (SD, 2.84 mm). Vascular anatomy: The perforating branches of the superior cerebellar peduncle, IPS, and MCP originated predominantly from the caudal trunk of the superior cerebellar artery. The inferior third of the superior cerebellar peduncle and IPS was the third most pierced by perforating arteries, and for the MCP, was its superior third. Crossing vessels: The branches of the pontotrigeminal vein and the caudal trunk of the superior cerebellar artery crossed the IPS mostly. The superior third of the IPS was the most crossed by arteries and veins. CONCLUSIONS: The middle thirds of the IPS and MCP as entry zones might be safer than their superior and inferior thirds due to fewer perforating branches, arterial trunks, and veins crossing the sulcus as fewer eloquent tracts.


Assuntos
Cerebelo , Microcirurgia , Artéria Basilar/cirurgia , Cerebelo/irrigação sanguínea , Cerebelo/cirurgia , Formaldeído , Humanos , Microcirurgia/métodos , Silicones
4.
World Neurosurg ; 158: e64-e74, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34715371

RESUMO

OBJECTIVE: Brainstem safe entry zones (EZs) are gates to access the intrinsic pathology of the brainstem. We performed a quantitative analysis of the intrinsic surgical corridor limits of the most commonly used EZs and illustrated these through an inside perspective using 2-dimensional photographs, 3-dimensional photographs, and interactive 3-dimensional model reconstructions. METHODS: A total of 26 human brainstems (52 sides) with the cerebellum attached were prepared using the Klingler method and dissected. The safe working areas and distances for each EZ were defined according to the eloquent fiber tracts and nuclei. RESULTS: The largest safe distance corresponded to the depth for the lateral mesencephalic sulcus (4.8 mm), supratrigeminal (10 mm), epitrigeminal (13.2 mm), peritrigeminal (13.3 mm), lateral transpeduncular (22.3 mm), and infracollicular (4.6 mm); the rostrocaudal axis for the perioculomotor (11.7 mm), suprafacial (12.6 mm), and transolivary (12.8 mm); and the mediolateral axis for the supracollicular (9.1 mm) and infracollicular (7 mm) EZs. The safe working areas were 46.7 mm2 for the perioculomotor, 21.3 mm2 for the supracollicular, 14.8 mm2 for the infracollicular, 33.1 mm2 for the supratrigeminal, 34.3 mm2 for the suprafacial, 21.9 mm2 for the infrafacial, and 51.7 mm2 for the transolivary EZs. CONCLUSIONS: The largest safe distance in most EZs corresponded to the depth, followed by the rostrocaudal axis and, finally, the mediolateral axis. The transolivary had the largest safe working area of all EZs. The supracollicular EZ had the largest safe area to access the midbrain tectum and the suprafacial EZ for the floor of the fourth ventricle.


Assuntos
Tronco Encefálico , Mesencéfalo , Tronco Encefálico/patologia , Tronco Encefálico/cirurgia , Cerebelo , Humanos
5.
Rev. argent. neurocir ; 34(4): 245-261, dic. 2020. ilus, tab
Artigo em Espanhol | LILACS, BINACIS | ID: biblio-1150433

RESUMO

Objetivo: Describir la anatomía quirúrgica de la fisura silviana (FS) a través de disecciones cadavéricas y neuroimágenes; desarrollar su aplicación microquirúrgica. Materiales y métodos: Se estudiaron 10 hemisferios cadavéricos humanos fijados y un cráneo humano en seco, a través de la disección de fibras blancas y de la anatomía arterial y neural, utilizando un microscopio quirúrgico. Las arterias cerebrales fueron inyectadas con silicona coloreada. La anatomía quirúrgica fue correlacionada con la anatomía neuroimagenológica. Finalmente, se recolectó la experiencia microquirúrgica adquirida y, a su vez, la anatomía del Complejo Silviano, fue revisada. Resultados: La FS se extiende desde la cara basal a la lateral del cerebro. Cada superficie tiene una parte superficial (tronco silviano y sus ramos), intermedia (compartimientos anterior y opercular lateral) y profunda (compartimiento esfenoidal, hendidura insular anterior y lateral y la región retroinsular). En 7 de los 10 hemisferios, el surco central no se intersectó con la FS en la superficie lateral del cerebro. En el 80% de los hemisferios, la principal bifurcación de la arteria cerebral media se localizó en o proximal al limen insular. Debajo de la pars triangularis se localiza el punto más ancho de la superficie lateral de la FS. Los autores comienzan la disección de la misma en o proximalmente a este punto. Conclusiones: El conocimiento anatómico profundo y su aplicación a las neuroimágenes, son herramientas esenciales para el planeamiento prequirúrgico y son requisitos mandatorios para operar con seguridad a través y alrededor de la FS


Objective: The aim of this study is to describe the microsurgical anatomy of the sylvian fissure, through cadaveric dissections and neuroimaging and to elucidate its clinical application for microsurgery. Methods: One human skull and ten cadaveric human hemispheres were studied through white matter fiber dissections and arterial and neural anatomy of the sylvian fissure and insular dissections under the microscope. The cerebral arteries were perfused with colored latex. The surgical anatomy was correlated with neuroimaging anatomy. Finally, the microsurgical experienced gained applying this anatomical knowledge was gathered, and the literature about the anatomy of the sylvian complex was revised, as well. Results: The Sylvian fissure extends from the basal to the lateral surface of the brain. Each surface has a superficial (sylvian stem and its rami), intermediate (anterior and lateral opercular compartments) and deep parts (sphenoidal compartment, anterior and lateral insular clefts and retroinsular region). In 7 out of 10 hemispheres, the central sulcus did not intersect with the sylvian fissure on the lateral surface of the brain. In 80% of the hemispheres, the middle cerebral artery main bifurcation was localized at or proximal to the limen insulae. Beneath the pars triangularis, the widest point of the lateral surface of the sylvian fissure is located. The authors start dissecting the sylvian fissure at this point. Conclusion: The thorough anatomical knowledge with its clinical application in modern neuroimaging are essential tools for preoperative planning and are mandatory requisites to safely operate through and around the sylvian fissure anatomical complex.


Assuntos
Humanos , Aneurisma , Artéria Cerebral Média , Anatomia , Neoplasias
6.
Rev. argent. neurocir ; 34(3): 172-186, sept. 2020. ilus
Artigo em Espanhol | LILACS, BINACIS | ID: biblio-1120881

RESUMO

Introducción: El conocimiento profundo de la anatomía microquirúrgica del lóbulo de la ínsula es crucial para operar pacientes con tumores en esta región. Objetivo: El objetivo de la segunda parte de este estudio es correlacionar la anatomía microquirúrgica con casos ilustrativos retirados de nuestra casuística de 35 pacientes en los cuales fueron realizados 44 cirugías de tumores en relación con el lóbulo de la ínsula. Material y Métodos: A lo largo de marzo de 2007 y agosto de 2014, 44 microcirugías fueron realizadas en 35 pacientes portadores de tumores insulares y los hallazgos de las cirugías y mapeo cerebral se correlacionaron con la anatomía microquirúrgica. Resultados: De una serie de 44 pacientes con tumores de la ínsula, la mayoría de los casos eran gliomas de bajo grado de malignidad (29 casos). El inicio de los síntomas en 34 pacientes fue epilepsia, siendo esta refractaria al tratamiento medicamentoso en 12 casos. El grado de resección fue subtotal o total en la mayoría de los casos de la serie. La mejoría en la calidad de vida (epilepsia, etc.) estuvo presente en más de la mitad de los pacientes. El déficit neurológico permanente estuvo presente en tres pacientes. Conclusión: En los tumores insulares, es tan importante el conocimiento profundo de la anatomía, como el saber utilizar e interpretar en tiempo real las observaciones de la monitorización neurofisiológica intraoperatoria.


Introduction: The deep knowledge of the microsurgical anatomy of the insular lobe is crucial to operate patients with tumors in this region. Objectives: Our purpose in this second part is to correlate insular surgical anatomy with illustrative cases from 4 surgeries performed on 35 patients with insular tumors. Materials and Methods: From March 2007 to August 2014, 44 microsurgeries were performed on 35 patients with insular glioma tumors. Of these, 29 cases were low-grade gliomas. Seizures were the first symptom in most cases. Total, or near total tumor resection was achieved in most of the patients. Improvement in quality of life was achieved in more than half of the patients after surgery. Moderate and permanent neurological deficits were present in 3 patients. Results: The majority of cases were low grade malignancy gliomas (29 cases). The onset of symptoms in 34 patients was epilepsy, being refractory to drug treatment in 12 cases. The degree of resection was subtotal or total in most cases of this series. The improvement in the quality of life (epilepsy, etc.) was present in more than half of the patients. Permanent neurological deficit was present in three patients. Conclusion: For insular tumors, microsurgical anatomy knowledge is as important as cortical and subcortical mapping


Assuntos
Humanos , Epilepsia , Qualidade de Vida , Morbidade , Anatomia
7.
Rev. argent. neurocir ; 34(2): 100-115, jun. 2020. ilus
Artigo em Espanhol | LILACS, BINACIS | ID: biblio-1123341

RESUMO

Introducción: El lóbulo de la ínsula, o ínsula, se encuentra oculto en la superficie lateral del cerebro. La ínsula está localizada profundamente en el surco lateral o cisura silviana, recubierta por los opérculos frontal, parietal y temporal. Objetivo: Estudiar la compleja anatomía del lóbulo de la ínsula, una de las regiones de mayor complejidad quirúrgica del cerebro humano, y su correlación anatómica con casos quirúrgicos. Material y Métodos: En la primera parte de este estudio presentamos los resultados de nuestras disecciones microquirúrgicas en fotografías 2 D y 3D; en la segunda parte de nuestro trabajo, la correlación anatómica con una serie de 44 cirugías en pacientes con tumores de la ínsula, principalmente gliomas, operados entre 2007 y 2014. Resultados: Extenso conjunto de fibras subcorticales, incluyendo el fascículo uncinado, fronto-occipital inferior y el fascículo arcuato, conectan la ínsula a las regiones vecinas. Varias estructuras anatómicas responsables por déficits neurológicos severos están íntimamente relacionadas con la cirugía de la ínsula, tales como lesiones de la arteria cerebral media, cápsula interna, áreas del lenguaje en el hemisferio dominante y arterias lenticuloestriadas. Conclusión: El entrenamiento en laboratorio de neuroanatomía, estudio de material impreso en 3D, el conocimiento sobre neurofisiología intra-operatoria y el uso de armamento neuroquirúrgico moderno son factores que influencian en los resultados quirúrgicos


Introduction: The insular lobe, or insula, is the cerebral lobe sitting deep in the sylvian fissure and hidden by the lateral surface of the brain. It is covered by the frontal, parietal and temporal operculum. Objectives: To study the anatomy of the insular lobe, one of the most complex parts of the human brain, and to correlate this anatomy with intraoperative findings. Materials and Methods: In the first part of this article we show the results of our dissections, documented in 2D and 3D, and focus on microsurgical anatomy. In the second part we correlate the anatomical structures with intraoperative findings from 44 insular tumor surgeries, mainly gliomas, of patients operated on from 2007 to 2014. Results: Huge bundles of subcortical fibers, like uncinate, inferior fronto-occipital and arcuate fascicles, connect the insula to the neighboring structures. Several anatomical structures related to neurological disabilities are closely related to insular surgery, like the middle cerebral artery, internal capsule, lenticulostriate arteries and cortical and subcortical language circuits. Conclusions: Microsurgical laboratory training, 3D documentation, knowledge of brain mapping and modern neurosurgical armamentarium are important factors in achieving good results with insular glioma tumors.


Assuntos
Humanos , Lobo Temporal , Encéfalo , Mapeamento Encefálico , Cérebro , Anatomia , Neuroanatomia
8.
World Neurosurg ; 138: e795-e805, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32217179

RESUMO

OBJECTIVE: In this article, we describe a new safe entry point for the posterolateral pons. METHODS: To show the adjacent anatomy and measure the part of the interpeduncular sulcus that can be safely accessed, we first performed a review of the literature regarding the pons anatomy and its surgical approaches. Thereafter, 1 human cadaveric head and 15 (30 sides) human brainstems with attached cerebellums were bilaterally dissected with the fiber microdissection technique. A clinical correlation was made with an illustrative case of a dorsolateral pontine World Health Organization grade I astrocytoma. RESULTS: The safe distance for accessing the interpeduncular sulcus was found to extend from the caudal end of the lateral mesencephalic sulcus to the point at which the intrapontine segment of the trigeminal nerve crosses the interpeduncular sulcus. The mean distance was 8.2 mm (range, 7.15-8.85 mm). Our interpeduncular sulcus safe entry zone can be exposed through a paramedian infratentorial supracerebellar approach. When additional exposure is required, the superior portion of the quadrangular lobule of the cerebellar hemispheric tentorial surface can be removed. In the presented case, surgical resection of the tumor was performed achieving a gross total resection, and the patient was discharged without neurologic deficit. CONCLUSIONS: The interpeduncular sulcus safe entry zone provides an alternative direct route for treating intrinsic pathologic entities situated in the posterolateral tegmen of the pons between the superior and middle cerebellar peduncles. The surgical corridor provided by this entry point avoids most eloquent neural structures, thereby preventing surgical complications.


Assuntos
Microdissecção/métodos , Microcirurgia/métodos , Pedúnculo Cerebelar Médio/cirurgia , Procedimentos Neurocirúrgicos/métodos , Ponte/cirurgia , Humanos , Pedúnculo Cerebelar Médio/anatomia & histologia , Ponte/anatomia & histologia
10.
Childs Nerv Syst ; 31(10): 1807-14, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26351232

RESUMO

PURPOSE: Knowledge of anatomy of the IV ventricle is basic to surgical approach of any kind of lesion in its compartment as well as for those located in its neighborhood. The purpose of this study is to demonstrate the surgical approach options for the IV ventricle, based on the step by step dissection of anatomical specimens. METHODS: Fifty formalin-fixed specimens provided were the material for this study. The dissections were performed in the microsurgical laboratory in Gainesville, Florida, USA. RESULTS: The IV ventricle in a midline sagittal cut shows a tent-shaped cavity with its roofs pointing posteriorly and the floor formed by the pons and the medulla. The superior roof is formed by the superior cerebellar peduncles laterally and the superior medullary velum on the midline. The inferior roof is formed by the tela choroidea, the velum medullary inferior, and the nodule. The floor of the IV ventricle has a rhomboid shape. The rostral two thirds are related to the pons, and the caudal one third is posterior to the medulla. The median sulcus divides the floor in symmetrical halves. The sulcus limitans runs laterally to the median sulcus, and the area between the two sulci is called the median eminence. The median eminence contains rounded prominence related to the cranial nucleus of facial, hypoglossal, and vagal nerves. The lateral recesses are extensions of the IV ventricle that opens into the cerebellopontine cistern. The cerebellomedullary fissure is a space between the cerebellum and the medulla and can be used as a surgical corridor to the IV ventricle. CONCLUSIONS: We obtained in this study a didactic dissection of the different anatomical structures, whose recognition is important for addressing the IV ventricle lesions.


Assuntos
Cerebelo/anatomia & histologia , Quarto Ventrículo/cirurgia , Bulbo/anatomia & histologia , Neurocirurgia/métodos , Ponte/anatomia & histologia , Cerebelo/irrigação sanguínea , Humanos , Bulbo/irrigação sanguínea , Ponte/irrigação sanguínea
11.
Arq. neuropsiquiatr ; Arq. neuropsiquiatr;72(10): 777-781, 10/2014. tab
Artigo em Inglês | LILACS | ID: lil-725334

RESUMO

Objective To establish preoperatively the localization of the cortical projection of the inferior choroidal point (ICP) and use it as a reliable landmark when approaching the temporal horn through a middle temporal gyrus access. To review relevant anatomical features regarding selective amigdalohippocampectomy (AH) for treatment of mesial temporal lobe epilepsy (MTLE). Method The cortical projection of the inferior choroidal point was used in more than 300 surgeries by one authors as a reliable landmark to reach the temporal horn. In the laboratory, forty cerebral hemispheres were examined. Conclusion The cortical projection of the ICP is a reliable landmark for reaching the temporal horn. .


Objetivo Estabelecer a projeção cortical do ponto coiroideo inferior e usá-la como referência para realizar a corticectomia e a abordagem do corno temporal do ventrículo lateral em cirurgias para o tratamento da epilepsia temporal mesial. Método A projeção cortical do ponto coroideo inferior foi utilizada por um dos autores seniors em mais de 300 casos de epilepsia temporal mesial para atingir o corno temporal do ventrículo lateral. Conclusão A projeção cortical do ponto coroideo inferior foi útil e confiável na abordagem do corno temporal do ventrículo lateral e ela está geralmente localizada na margem inferior do giro temporal médio, em média, a 4,52 cm posterior ao polo temporal. .


Assuntos
Humanos , Pontos de Referência Anatômicos/anatomia & histologia , Procedimentos Neurocirúrgicos/métodos , Lobo Temporal/anatomia & histologia , Lobo Temporal/cirurgia , Pontos de Referência Anatômicos/cirurgia , Dissecação , Epilepsia do Lobo Temporal/cirurgia
12.
Rev. chil. neurocir ; 40(1): 8-11, jul. 2014. ilus
Artigo em Inglês | LILACS | ID: biblio-831375

RESUMO

Introducción/Objetivos: El lóbulo temporal anterior tiene importantes estructuras subcorticales, especialmente fibras blancas que llevan la información visual. La comprensión de esta región anatómica, importantes para la práctica microquirúrgica, se basa en técnicas de disección de fibras. Ellos proporcionan perspectiva tridimensional de esta región y añaden un enfoque quirúrgico exitoso para el tratamiento de las lesiones temporales mesiales. El propósito de este trabajo es el estudio de la anatomía de la pared lateral del ventrículo lateral con el fin de determinar una zona libre de la radiación óptica. Métodos: Se diseccionaron diez hemisferios cerebrales, preparados de acuerdo con técnicas de Klingler. Se utilizan espátulas de madera con puntas de diferentes tamaños. La radiación óptica fue delimitada y las medidas se tomaron a partir de esta estructura para el polo temporal, que se utiliza como punto de referencia. Resultados: Abordajes para el cuerno temporal superior a 27 mm más allá del polo temporal pueden cruzar asa de Meyer y determinar un perjuicio a la radiación óptica con los consiguientes déficits en los campos visuales. Conclusión: La determinación de la zona de libre de fibras de radiación óptica es factible. En este trabajo se podría inferir que el área libre de la radiación óptica se encuentra en la región anterioinferior del lóbulo temporal a una distancia de hasta 2,7 centímetros desde el polo temporal y permite el acceso a el hipocampo y la amígdala durante la cirugía de la epilepsia. Resecciones más grandes que estas medidas permiten aclarar de una lesión a la radiación óptica con los consiguientes déficits en los campos visuales.


Introduction/Objective: The anterior temporal lobe has important subcortical structures, especially white fibers that lead visual information. Understanding this anatomical region, important for microsurgical practice, is based on fibers dissection techniques. They provide three-dimensional perspective for this region and add a successful surgical approach for the treatment of mesial temporal lesions. The purpose of this paper is to study the anatomy of the lateral wall of the lateral ventricle in order to determine a free area of the optical radiation. Methods: Ten cerebral hemispheres were dissected, prepared according to Klingler´s techniques. Wooden spatulas with tips of various sizes were used. The optical radiation was delimited and measures were taken from this structure to the temporal pole, used as a reference point. Results: Approaches to the temporal horn larger than 27 mm beyond the temporal pole can cross Meyer´s loop and determine injury to the optical radiation with consequent postoperatively deficits in visual fields. Conclusion: The determination of free area of optical radiation fibers is feasible. In this work we could infer that free area of optical radiation is located in the anterioinferior region of the temporal lobe at a distance of up to 2.7 centimeters from the temporal pole and allows access to the hippocampus and amygdala during epilepsy surgery. Larger resections than these measures can possibly determine injury to the optical radiation with consequent deficits in visual fields.


Assuntos
Humanos , Dissecação/métodos , Epilepsia do Lobo Temporal/cirurgia , Lobo Temporal/anatomia & histologia , Lobo Temporal/cirurgia , Lobo Temporal/lesões , Colículos Superiores , Vias Visuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA