Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Metabolomics ; 17(4): 39, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33825999

RESUMO

BACKGROUND: Microorganisms synthesize and release a large diversity of small molecules like volatile compounds, which allow them to relate and interact with their environment. Volatile organic compounds (VOCs) are carbon-based compounds with low molecular weight and generally, high vapor pressure; because of their nature, they spread easily in the environment. Little is known about the role of VOCs in the interaction processes, and less is known about VOCs produced by Malassezia, a genus of yeasts that belongs to the human skin mycobiota. These yeasts have been associated with several dermatological diseases and currently, they are considered as emerging opportunistic yeasts. Research about secondary metabolites of these yeasts is limited. The pathogenic role and the molecular mechanisms involved in the infection processes of this genus are yet to be clarified. VOCs produced by Malassezia yeasts could play an important function in their metabolism; in addition, they might be involved in either beneficial or pathogenic host-interaction processes. Since these yeasts present differences in their nutritional requirements, like lipids to grow, it is possible that these variations of growth requirements also define differences in the volatile organic compounds produced in Malassezia species. AIM OF REVIEW: We present a mini review about VOCs produced by microorganisms and Malassezia species, and hypothesize about their role in its metabolism, which would reveal clues about host-pathogen interaction. KEY SCIENTIFIC CONCEPTS OF REVIEW: Since living organisms inhabit a similar environment, the interaction processes occur naturally; as a result, a signal and a response from participants of these processes become important in understanding several biological behaviors. The efforts to elucidate how living organisms interact has been studied from several perspectives. An important issue is that VOCs released by the microbiota plays a key role in the setup of relationships between living micro and macro organisms. The challenge is to determine what is the role of these VOCs produced by human microbiota in commensal/pathogenic scenarios, and how these allow understanding the species metabolism. Malassezia is part of the human mycobiota, and it is implicated in commensal and pathogenic processes. It is possible that their VOCs are involved in these behavioral changes, but the knowledge about this remains overlocked. For this reason, VOCs produced by microorganisms and Malassezia spp. and their role in several biological processes are the main topic in this review.


Assuntos
Malassezia/metabolismo , Pele/microbiologia , Compostos Orgânicos Voláteis/metabolismo , Animais , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Metabolismo dos Lipídeos , Micobioma/fisiologia , Leveduras/metabolismo
2.
Molecules ; 24(16)2019 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-31434211

RESUMO

Iron is an essential plant micronutrient. It is a component of numerous proteins and participates in cell redox reactions; iron deficiency results in a reduction in nutritional quality and crop yields. Volatiles from the rhizobacterium Arthrobacter agilis UMCV2 induce iron acquisition mechanisms in plants. However, it is not known whether microbial volatiles modulate other metabolic plant stress responses to reduce the negative effect of iron deficiency. Mass spectrometry has great potential to analyze metabolite alterations in plants exposed to biotic and abiotic factors. Direct liquid introduction-electrospray-mass spectrometry was used to study the metabolite profile in Medicago truncatula due to iron deficiency, and in response to microbial volatiles. The putatively identified compounds belonged to different classes, including pigments, terpenes, flavonoids, and brassinosteroids, which have been associated with defense responses against abiotic stress. Notably, the levels of these compounds increased in the presence of the rhizobacterium. In particular, the analysis of brassinolide by gas chromatography in tandem with mass spectrometry showed that the phytohormone increased ten times in plants grown under iron-deficient growth conditions and exposed to microbial volatiles. In this mass spectrometry-based study, we provide new evidence on the role of A. agilis UMCV2 in the modulation of certain compounds involved in stress tolerance in M. truncatula.


Assuntos
Arthrobacter/metabolismo , Brassinosteroides/metabolismo , Ferro/metabolismo , Medicago truncatula/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Compostos Orgânicos Voláteis/farmacologia , Inoculantes Agrícolas , Brassinosteroides/análise , Análise por Conglomerados , Medicago truncatula/efeitos dos fármacos , Medicago truncatula/crescimento & desenvolvimento , Modelos Biológicos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento , Plântula/metabolismo , Estresse Fisiológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA