Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Vet Ophthalmol ; 26(2): 176-179, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36152337

RESUMO

An 8-year-old female pre-metamorphic axolotl (Ambystoma mexicanum) was examined for a suspected anterior lens luxation. Slit-lamp biomicroscopy revealed two lens-like structures in the anterior chamber of the right eye (OD), each with cataractous change. Ultrasound biomicroscopy and optical coherence tomography (OCT) were performed without sedation, and revealed small lenticular structures each with distinct nuclei and cortices. Although a distinct connection of the two lenticular structures could not be definitively ruled out, the structures appeared separate. Each of the lenticular structures was closely associated with its respective iris leaflet. This report demonstrates application of advanced imaging for diagnostic use in axolotl ophthalmology, showing that imaging of the lens can be performed without sedation, topical anesthetic, nor contact gel with high diagnostic quality. Although two distinct lenses were diagnosed with no historical evidence of trauma, the small sizes of each lenticular structure, with no detectable connection between them, are suggestive of a possible regenerative abnormality. This report opens discussion for the regenerative capabilities of the pre-metamorphic adult axolotl and possible implementations of their use in regenerative medicine research for the development of future therapies.


Assuntos
Cristalino , Lentes , Feminino , Animais , Ambystoma mexicanum , Microscopia Acústica/veterinária , Tomografia de Coerência Óptica/veterinária
2.
Front Cell Dev Biol ; 10: 786533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35602604

RESUMO

The Mexican axolotl (Ambystoma mexicanum) is one of the most important models in contemporary regeneration research and regenerative medicine. This is the result of the long history of the species as an experimental and laboratory bred animal. One of many research questions investigated in the axolotl is regeneration. The species' astonishing ability to regenerate tissues and entire body parts already became apparent shortly after the first 34 living axolotls had been brought from Mexico to Europe in 1864. In the context of their unclear status as larvae or adults and the mysterious transformation of some animals into an adult form, the Paris zoologist Auguste Duméril cut off the gills of several individuals in an attempt to artificially induce the metamorphosis. This produced the first reports on the animals' regenerative powers and led to sporadic but continuous investigations. But it remained just one of the many phenomena studied in axolotls. Only at the beginning of the 20th century, regeneration became a more prominent aspect in the experimental investigations of axolotls. In experimental embryology, regeneration in axolotls was used in three different ways: it was studied as a phenomenon in its own right: more importantly, it served as a macroscopic model for normal development and, together with other techniques like grafting, became a technical object in the experimental systems of embryologists. In my paper, I will look into how the axolotl became an experimental animal in regeneration research, the role of practices and infrastructures in this process and the ways in which regeneration in the axolotl oscillated between epistemic thing and technical object.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA