Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Water Environ Res ; 96(6): e11065, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38895814

RESUMO

Wastewater containing tetrabromobisphenol A (TBBPA), a commonly used flame retardant found in wastewater, can present significant toxic effects on biota, yet its impact on tropical freshwater environments is not well understood. This study explores the effectiveness of two independent anaerobic treatment systems, the acidogenic reactor (AR) and the methanogenic reactor (MR), for the ecotoxicity reduction of TBBPA-rich wastewater in four tropical freshwater species. Despite presenting good physicochemical performance and reduced toxicity of the influent for most species, AR and MR treatments remain acute and chronic toxicity. Overall, MR exhibited greater efficacy in reducing influent toxicity compared with AR. TBBPA bioaccumulation was observed in Chironomus sancticaroli after short-term exposure to 100% MR effluent. Multigenerational exposures highlighted changes in the wing length of C. sancticaroli, showing decreases after influent and AR exposures and increases after MR exposures. These findings underscore the need for ecotoxicological tools in studies of new treatment technologies, combining the removal of emerging contaminants with safeguarding aquatic biota. PRACTITIONER POINTS: Acidogenic and methanogenic reactors reduced the acute and chronic toxicity of wastewater containing tetrabromobisphenol A. Both treatments still exhibit toxicity, inducing short- and long-term toxic effects on four native tropical species. The aquatic species Pristina longiseta was most sensitive to effluents from acidogenic and methanogenic reactors. TBBPA concentrations recovered from Chironomus sancticaroli bioaccumulation analysis ranged from 1.07 to 1.35 µg g-1. Evaluating new treatment technologies with multiple species bioassays is essential for a comprehensive effluent toxicity assessment and ensuring aquatic safety.


Assuntos
Bifenil Polibromatos , Poluentes Químicos da Água , Animais , Bifenil Polibromatos/toxicidade , Bifenil Polibromatos/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/metabolismo , Anaerobiose , Águas Residuárias/química , Biota , Retardadores de Chama/toxicidade , Retardadores de Chama/metabolismo , Eliminação de Resíduos Líquidos/métodos , Chironomidae/efeitos dos fármacos , Chironomidae/metabolismo , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/metabolismo
2.
Biotechnol Lett ; 44(2): 239-251, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35037233

RESUMO

The digestion efficiency of liquid industrial wastes increases when using bioreactors colonized by microbial biofilms. High concentrations of proteins derived from the fish processing industry lead to the production of ammonia, which inhibits methane production. Two bioreactors were constructed to compare methanogenic activity: one enriched with mMPA (methylaminotrofic methane production archaea) consortia (control bioreactor), and the second with NH3 tolerant consortia (treatment bioreactor). Ammonia tolerant activity was assessed by applying an ammonia shock (755 mg NH3/L). Methane production, consumption of total organic carbon (TOC) and the taxonomic composition of bacteria and archaea was evaluated using 16S rDNA in the acclimatization, ammonia shock, and recovery phases.The ammonia shock significantly affected both methane production and the consumption of TOC in the control reactor (p < 0.05) and taxonomical composition of the microbial consortia (OTU). These values remained constant in the treatment reactor. The analysis of biofilm composition showed a predominance of Methanosarcinaceae (Methanomethylovorans sp., and probably two different species of Methanosarcina sp.) in bioreactors. These results demonstrate that using acclimated biofilms enriched with ammonia tolerant methanogens control the inhibitory effect of ammonia on methanogenesis.


Assuntos
Amônia , Reatores Biológicos , Indústria de Processamento de Alimentos , Purificação da Água , Amônia/análise , Amônia/metabolismo , Anaerobiose , Animais , Biofilmes , Reatores Biológicos/microbiologia , Peixes , Metano/metabolismo
3.
J Appl Microbiol ; 126(2): 667-683, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30269410

RESUMO

AIMS: The phylum Chloroflexi is frequently found in high abundance in methanogenic reactors, but their role is still unclear as most of them remain uncultured and understudied. Hence, a detailed analysis was performed in samples from five up-flow anaerobic sludge blanket (UASB) full-scale reactors fed different industrial wastewaters. METHODS AND RESULTS: Quantitative PCR show that the phylum Chloroflexi was abundant in all UASB methanogenic reactors, with higher abundance in the reactors operated for a long period of time, which presented granular biomass. Both terminal restriction fragment length polymorphism and 16S rRNA gene amplicon sequencing revealed diverse Chloroflexi populations apparently determined by the different inocula. According to the phylogenetic analysis, the sequences from the dominant Chloroflexi were positioned in branches where no sequences of the cultured representative strains were placed. Fluorescent in situ hybridization analysis performed in two of the reactors showed filamentous morphology of the hybridizing cells. CONCLUSIONS: While members of the Anaerolineae class within phylum Chloroflexi were predominant, their diversity is still poorly described in anaerobic reactors. Due to their filamentous morphology, Chloroflexi may have a key role in the granulation in methanogenic UASB reactors. SIGNIFICANCE AND IMPACT OF THE STUDY: Our results bring new insights about the diversity, stability, dynamics and abundance of this phylum in full-scale UASB reactors which aid in understanding their function within the reactor biomass. However, new methodological approaches and analysis of bulking biomass are needed to completely unravel their role in these reactors. Combining all this knowledge with reactor operational parameters will allow to understand their participation in granulation and bulking episodes and design strategies to prevent Chloroflexi overgrowth.


Assuntos
Reatores Biológicos/microbiologia , Chloroflexi/isolamento & purificação , Biomassa , Chloroflexi/classificação , Chloroflexi/citologia , Chloroflexi/genética , Hibridização in Situ Fluorescente , Metano/metabolismo , Filogenia , Esgotos/microbiologia , Águas Residuárias/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA