Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
3D Print Med ; 10(1): 29, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39110290

RESUMO

INTRODUCTION: The use of three-dimensional (3D) printed anatomic models is steadily increasing in research and as a tool for clinical decision-making. The mechanical properties of polymers and metamaterials were investigated to evaluate their application in mimicking the biomechanics of the aortic vessel wall. METHODOLOGY: Uniaxial tensile tests were performed to determine the elastic modulus, mechanical stress, and strain of 3D printed samples. We used a combination of materials, designed to mimic biological tissues' properties, the rigid VeroTM family, and the flexible Agilus30™. Metamaterials were designed by tessellating unit cells that were used as lattice-reinforcement to tune their mechanical properties. The lattice-reinforcements were based on two groups of patterns, mainly responding to the movement between links/threads (chain and knitted) or to deformation (origami and diamond crystal). The mechanical properties of the printed materials were compared with the characteristics of healthy and aneurysmal aortas. RESULTS: Uniaxial tensile tests showed that the use of a lattice-reinforcement increased rigidity and may increase the maximum stress generated. The pattern and material of the lattice-reinforcement may increase or reduce the strain at maximum stress, which is also affected by the base material used. Printed samples showed max stress ranging from 0.39 ± 0.01 MPa to 0.88 ± 0.02 MPa, and strain at max stress ranging from 70.44 ± 0.86% to 158.21 ± 8.99%. An example of an application was created by inserting a metamaterial designed as a lattice-reinforcement on a model of the aorta to simulate an abdominal aortic aneurysm. CONCLUSION: The maximum stresses obtained with the printed models were similar to those of aortic tissue reported in the literature, despite the fact that the models did not perfectly reproduce the biological tissue behavior.

2.
Nanomaterials (Basel) ; 13(4)2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36839127

RESUMO

The growing development of nanotechnology requires the design of new devices that integrate different functionalities at a reduced scale. For on-chip applications such as optical communications or biosensing, it is necessary to selectively transmit a portion of the electromagnetic spectrum. This function is performed by the so-called band-pass filters. While several plasmonic nanostructures of complex fabrication integrated to optical waveguides have been proposed, hyperbolic metamaterials remain almost unexplored for the design of integrated band-pass filters at optical wavelengths. By making use of the effective medium theory and finite integration technique, in this contribution we numerically study an integrated device consisting of a one-dimensional hyperbolic metamaterial placed on top of a photonic waveguide. The results show that the filling fraction, period, and number of layers modify the spectral response of the device, but not for type II and effective metal metamaterials. For the proposed Au-TiO2 multilayered system, the filter operates at a wavelength of 760 nm, spectral bandwidth of 100 nm and transmission efficiency above 40%. The designed devices open new perspectives for the development of integrated band-pass filters of small scale for on-chip integrated optics applications.

3.
Biosensors (Basel) ; 12(11)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36354471

RESUMO

Metamaterials are broadly defined as artificial, electromagnetically homogeneous structures that exhibit unusual physical properties that are not present in nature. They possess extraordinary capabilities to bend electromagnetic waves. Their size, shape and composition can be engineered to modify their characteristics, such as iridescence, color shift, absorbance at different wavelengths, etc., and harness them as biosensors. Metamaterial construction from biological sources such as carbohydrates, proteins and nucleic acids represents a low-cost alternative, rendering high quantities and yields. In addition, the malleability of these biomaterials makes it possible to fabricate an endless number of structured materials such as composited nanoparticles, biofilms, nanofibers, quantum dots, and many others, with very specific, invaluable and tremendously useful optical characteristics. The intrinsic characteristics observed in biomaterials make them suitable for biomedical applications. This review addresses the optical characteristics of metamaterials obtained from the major macromolecules found in nature: carbohydrates, proteins and DNA, highlighting their biosensor field use, and pointing out their physical properties and production paths.


Assuntos
Técnicas Biossensoriais , Nanopartículas , Materiais Biocompatíveis , DNA , Carboidratos
4.
Proc Inst Mech Eng H ; 236(11): 1635-1645, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36177996

RESUMO

Selecting the correct material for each application has always been important. Now, with lattice metamaterials engineers can take advantage of the properties of these metamaterials to best suit a specific application. This paper investigates transtibial lower limb socket stress reduction through the implementation of conformal lattice metamaterials. In this work, a model was obtained with a 3D scanner from a plaster cast taken from a participant with a trans-tibial amputation. Then a 3D socket model was created and two conformal patterns were added to the surface of the socket using nTopology®. Parametric studies to relate the lattice metamaterials constituent elements to their effective structural properties, when such are loaded in-plane and out-of-plane were also included. Pressure test simulations were performed to determine the stresses produced in the sockets. This study concludes with discussion of the results and provides information on how surface conformal patterns can improve socket performance, showing that surface-vertex-centroid patterns increase stiffness and relieve stresses.


Assuntos
Membros Artificiais , Humanos , Desenho de Prótese , Cotos de Amputação , Amputação Cirúrgica , Tíbia/cirurgia , Extremidade Inferior
5.
ACS Biomater Sci Eng ; 8(7): 2798-2824, 2022 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-35709523

RESUMO

Over the last three decades but more particularly during the last 5 years, auxetic mechanical metamaterials constructed from precisely architected polymer-based materials have attracted considerable attention due to their fascinating mechanical properties. These materials present a negative Poisson's ratio and therefore unusual mechanical behavior, which has resulted in enhanced static modulus, energy adsorption, and shear resistance, as compared with the bulk properties of polymers. Novel advanced polymer processing and fabrication techniques, and in particular additive manufacturing, allow one to design complex and customizable polymer architectures that are particularly relevant to fabricate auxetic mechanical metamaterials. Although these metamaterials exhibit exotic mechanical properties with potential applications in several engineering fields, biomedical applications seem to be one of the most relevant with a growing number of articles published over recent years. As a result, special focus is needed to understand the potential of these structures and foster theoretical and experimental investigations on the potential benefits of the unusual mechanical properties of these materials on the way to high performance biomedical applications. The present Review provides up to date information on the recent progress of polymer-based auxetic mechanical metamaterials mainly fabricated using additive manufacturing methods with a special focus toward biomedical applications including tissue engineering as well as medical devices including stents and sensors.


Assuntos
Fenômenos Biomecânicos , Engenharia Biomédica , Polímeros , Animais , Engenharia Biomédica/métodos , Materiais Biomiméticos , Equipamentos e Provisões , Humanos , Polímeros/química , Engenharia Tecidual
6.
Materials (Basel) ; 9(11)2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-28774042

RESUMO

Metamaterial behavior of polymer nanocomposites (NCs) based on isotactic polypropylene (iPP) and multi-walled carbon nanotubes (MWCNTs) was investigated based on the observation of a negative dielectric constant (ε'). It is demonstrated that as the dielectric constant switches from negative to positive, the plasma frequency (ωp) depends strongly on the ultrasound-assisted fabrication method, as well as on the melt flow index of the iPP. NCs were fabricated using ultrasound-assisted extrusion methods with 10 wt % loadings of MWCNTs in iPPs with different melt flow indices (MFI). AC electrical conductivity (σ(AC)) as a function of frequency was determined to complement the electrical classification of the NCs, which were previously designated as insulating (I), static-dissipative (SD), and conductive (C) materials. It was found that the SD and C materials can also be classified as metamaterials (M). This type of behavior emerges from the negative dielectric constant observed at low frequencies although, at certain frequencies, the dielectric constant becomes positive. Our method of fabrication allows for the preparation of metamaterials with tunable ωp. iPP pure samples show only positive dielectric constants. Electrical conductivity increases in all cases with the addition of MWCNTs with the largest increases observed for samples with the highest MFI. A relationship between MFI and the fabrication method, with respect to electrical properties, is reported.

7.
Biomed Opt Express ; 2(8): 2354-63, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21833372

RESUMO

We investigate optical torques over absorbent negative refractive index spherical scatterers under the influence of linear and circularly polarized TEM(00) focused Gaussian beams, in the framework of the generalized Lorenz-Mie theory with the integral localized approximation. The fundamental differences between optical torques due to spin angular momentum transfer in positive and negative refractive index optical trapping are outlined, revealing the effect of the Mie scattering coefficients in one of the most fundamental properties in optical trapping systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA