Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 203: 116428, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38735170

RESUMO

The steel industry is a significant worldwide source of atmospheric particulate matter (PM). Part of PM may settle (SePM) and deposit metal/metalloid and metallic nanoparticles in aquatic ecosystems. However, such an air-to-water cross-contamination is not observed by most monitoring agencies. The region of Vitoria City is the main location of iron processing for exports in Brazil, and it has rivers, estuaries, and coastal areas affected by SePM. We have evaluated the effects of SePM on a local representative fish species, the fat snook, Centropomus parallelus. After acclimation, 48 fishes (61.67 ± 27.83 g) were individually exposed for 96 h to diverse levels of SePM (0.0, 0.01, 0.1 and 1 g/L-1). The presence of metals in the blood and several blood biomarkers were analyzed to evaluate the impact of SePM on stress signaling, blood oxygen transport capacity, and innate immune activity. Metal bioaccumulation was measured from blood in two separately analyzed compartments: intracellular (erythrocytes plus white blood cells) and extracellular (plasma). The major metals present at all contamination levels in both compartments were Fe and Zn, followed by Al and Cu, plus traces of 'Emerging metals': Ba, Ce, La, Rb, Se, Sr, and Ti. Emerging metals refer to those that have recently been identified in water as contaminants, encompassing rare earth elements and critical technology elements, as documented in previous studies (See REEs and TCEs in Cobelo-García et al., 2015; Batley et al., 2022). Multivariate analysis revealed that SePM had strong, dose-dependent correlations with all biomarker groups and indicated that blood oxygen-carrying capacity had the highest contamination responsiveness. Metal contamination also increased cortisol and blood glucose levels, attesting to increased stress signaling, and had a negative effect on innate immune activity. Knowledge of the risks related to SePM contamination remains rudimentary. However, the fact that there was metal bioaccumulation, causing impairment of fundamental physiological and cellular processes in this ecologically relevant fish species, consumed by the local human population, highlights the pressing need for further monitoring and eventual control of SePM contamination.


Assuntos
Imunidade Inata , Material Particulado , Poluentes Químicos da Água , Animais , Imunidade Inata/efeitos dos fármacos , Material Particulado/toxicidade , Poluentes Químicos da Água/toxicidade , Monitoramento Ambiental , Aço , Brasil , Metais/toxicidade , Poluentes Atmosféricos/toxicidade
2.
Environ Res ; 238(Pt 2): 117307, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37797667

RESUMO

The Fundão Dam failure has been the most significant environmental disaster in Brazil. The catastrophe released large amounts of mining waste into the environment, including toxic metals/metalloids, which are recognized to induce carcinogenic effects. The urinary levels of 8-hydroxy-2'-deoxyguanosine (8OHdG), a widely accepted oxidative stress and carcinogenesis biomarker, provide a potential tool for assessing the disaster's health implications. This study investigated the association between urinary levels of some toxic metals/metalloids and 8OHdG in Brazilian individuals living in areas affected by the Fundão dam failure. Urinary concentrations of arsenic (As), cadmium (Cd), mercury (Hg), nickel (Ni), and lead (Pb) were determined using inductively coupled plasma mass spectrometry, while 8OHdG was analyzed by liquid chromatography-tandem mass spectrometry. Non-parametric bootstrap regression was used to estimate the associations between the urinary levels of toxic elements and 8OHdG. The results showed that except for Hg, urinary concentrations of all metals/metalloids analyzed here exceeded the reference ranges for the Brazilian population. The regression analysis revealed that As (0.337; CI 95%: 0.203; 0.474), Cd (0.268; CI 95%: 0.036; 0.520), and Ni (0.296; CI 950.108; 0.469) were positively associated with creatinine-adjusted urinary 8OHdG levels. Associations were not found for Hg (0.0122; CI 95%: -0.155; 0.183) and Pb (0.201; CI 95%: -0.040; 0.498). The current findings suggest that high exposure to toxic metals/metalloids might increase 8OHdG levels with potential adverse health effects. This study is the first one in which the relationship between toxic metals/metalloids and oxidative stress biomarkers is investigated in populations affected by environmental disasters. Further prospective studies are necessary to monitor exposure levels and explore additional health impacts.


Assuntos
Arsênio , Mercúrio , Metaloides , Metais Pesados , Humanos , Metaloides/toxicidade , Cádmio , Brasil , 8-Hidroxi-2'-Desoxiguanosina , Chumbo , Estudos Prospectivos , Níquel , Estresse Oxidativo , Metais Pesados/toxicidade , Monitoramento Ambiental/métodos
3.
Sci Total Environ ; 793: 148561, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34175608

RESUMO

Compiling and reporting data related to the presence of pharmaceuticals and pesticides are crucial means of assessing the risk those chemicals pose to human health and environment. Data sets from different sources were combined using a data fusion approach to produce a spatial and temporal variation of contaminants presents in water from Lake Guaíba (29°55'-30°24' S; 51°01'-51°20' W). Lake Guaíba is a 496 km2 water body situated in the geological depression of Rio Grande do Sul State, Brazil; that is fed by several rivers from the metropolitan area, the 5th largest metro area in Brazil, with approximately 5 million inhabitants. Analytical methodology to quantify pharmaceuticals and pesticides by LC-QTOF-MS and GC-MS/MS was validated for 41 pharmaceutical and 62 pesticides. Furthermore, 27 chemical elements were analyzed by ICP-MS, and physical chemical parameters were determined using established methodologies. All validation parameters were in accordance with the National Institute of Metrology, Standardization, and Industrial Quality. Thirty-five water samples were analyzed from January to August 2019, and 15 pharmaceuticals and 25 pesticides were present in concentrations ranging from 6.00 ng L-1 to 580.00 ng L-1. Twenty-seven elements were analyzed during the same period, and 18 were present in concentrations ranging from 0.2 µg L-1 to 7060 µg L-1. Samples were tagged according to the points and months of collection to identify temporal and spatial patterns. The main findings show that the compounds are distributed throughout the studied area without an apparent regular pattern, suggesting that events in a specific point affect the entire ecosystem. Conversely, temporal variations were well defined, as samples were grouped according to the climatic conditions of the months of collection. Considering the calculated quotient risks, atrazine, cyproconazole, diuron, and simazine showed the highest risk levels for algae; acetaminophen, diclofenac, and ibuprofen showed the highest risk levels for aquatics invertebrates.


Assuntos
Metaloides , Praguicidas , Preparações Farmacêuticas , Poluentes Químicos da Água , Brasil , Ecossistema , Monitoramento Ambiental , Humanos , Lagos , Praguicidas/análise , Rios , Espectrometria de Massas em Tandem , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA