RESUMO
Ruthenium(II) complexes (Ru1-Ru3) with the general formula [Ru(O-O)(PPh3)2(bipy)]PF6, bearing two triphenylphosphine (PPh3), bipyridine (bipy) and a series of natural and synthetic ß-diketones (O,O) ligands were synthesized and characterized using various analytical techniques. The interaction between the complexes and calf thymus DNA (CT-DNA) was investigated and demonstrated a weak interaction. The cytotoxicity of the complexes was investigated against breast cancer cells (MDA-MB-231 and MCF-7), lung cancer cells (A549), cisplatin-resistant ovarian cancer cells (A2780cis), as well as non-tumour lung (MRC-5) and non-tumour breast (MCF-10A) cell lines. All complexes exhibited cytotoxic activity against all the cell lines studied, with half maximal inhibitory concentration (IC50) values ranging from 0.39 to 13 µM. Notably, the three complexes demonstrated selectivity against the A2780cis cell line, with IC50 ranging from 0.39 to 0.82 µM. Among them, Ru2 exhibited the highest cytotoxicity, with an IC50 value of 0.39 µM. Consequently, this new class of complexes shows good selectivity towards cisplatin-resistant ovarian cancer cells and it is promising for further investigation as anti-cancer agents.
RESUMO
The objectives of this work are to develop nanocarrier systems for the Ru(II)-p-cymene naproxen antitumor metallodrug, [Ru(η6-p-cymene)(npx)Cl] or Rupcy, based on polymeric nanoparticles (NPs) composed by the biodegradable poly(lactic acid) (PLA) and the hydrophilic polymerised ß-cyclodextrin (PolyCD); to validate an analytical method for determination of Ru incorporated into the metallodrug loaded-NPs. The PolyCD was prepared by single step condensation and polymerisation reaction and incorporated as a polymer blend during the fabrication of PLA/PolyCD blends NPs and also as a core/shell structure built by adsorption of the PolyCD onto the surface of PLA NPs to give PLA(core)/PolyCD(shell) NPs. Three different loaded-systems incorporating the metallodrug (Rupcy-PLA NPs (1), Rupcy-PLA/PolyCD blends (2), and Rupcy-PLA(core)/PolyCD(shell) NPs (3)) were prepared by nanoprecipitation. The characterisation was performed by Proton Nuclear Magnetic Resonance, Matrix Assisted Laser Desorption/Ionization Time-of-Flight, Fourier-Transform Infra-red and UV-VIS Electronic Absorption Spectroscopies, Thermogravimetric Analysis, Differential Scanning Calorimetry, Dynamic Light Scattering, and Electrophoretic Light Scattering. Ru was determined by Microwave Induced Plasma Optical Emission Spectrometry (MIP-OES) with validation of the method. The metallodrug entrapment efficiency was around 90% (w/w) and drug loading was at 3-4% (w/w). The characterised metallodrug-loaded systems exhibited monomodal size distributions and appropriate hydrodynamic diameters [218.3 ± 13.5 (1), 205.4 ± 14.4 (2), 231.5 ± 22.0 (3) nm] and zeta potential values [-31.5 ± 2.2 (1), -26.1 ± 4.5 (2), -28.8 ± 6.1 (3) mV]. The validation of the MIP-OES method by evaluating selectivity, linearity, precision, accuracy, and limits of detection and quantification succeeded. The NPs parameters are compatible with colloidally stable systems. The MIP-OES method showed to be simple, reliable, and feasible to quantify indirectly the amount of the metallodrug-loaded into the PLA NPs.
Assuntos
Nanopartículas , Rutênio , Naproxeno , Micro-Ondas , Poliésteres/química , Polímeros/química , Nanopartículas/química , Análise Espectral , Tamanho da Partícula , Portadores de Fármacos/químicaRESUMO
Currently the only drug available to treat Chagas disease in Brazil is benznidazole (BZN). Therefore, there is an urgent need to discover and develop new anti- Trypanosoma cruzi candidates. In our continuous effort to enhance clinical antiparasitic drugs using synergistic strategy, BZN was coordinated to silver and copper ions to enhance its effectiveness to treat that illness. In this work, the syntheses of four novel metal-BZN complexes, [Ag(BZN)2]NO3·H2O (1), [CuCl2(BZN)(H2O)]·1/2CH3CN (2), [Ag(PPh3)2(BZN)2]NO3·H2O (3), and [Cu(PPh3)2(BNZ)2]NO3·2H2O (4), and their characterization using multiple analytical and spectroscopic techniques such as Infrared (FTIR), Nuclear Magnetic Resonance (1H, 13C, 31P), UV-Visible (UV-Vis), Electron Paramagnetic Resonance (EPR), conductivity and elemental analysis are described. IC50 (Half-maximal inhibitory concentration) values of Ag-BZN compounds are about five to ten times lower than benznidazole itself in both proliferation stages of the parasite (epimastigotes and amastigotes). The cytotoxicity of both compounds in human cells (fibroblasts and hepatocytes) are comparable to BZN, indicating that Ag-BZN complexes can be more selective than BZN.
Assuntos
Anti-Infecciosos , Doença de Chagas , Nitroimidazóis , Tripanossomicidas , Trypanosoma cruzi , Humanos , Prata/farmacologia , Cobre/farmacologia , Cobre/uso terapêutico , Antiparasitários/farmacologia , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico , Doença de Chagas/tratamento farmacológico , Nitroimidazóis/farmacologia , Anti-Infecciosos/uso terapêuticoRESUMO
Casiopeinas are a family of mixed chelate copper(II) complexes with antiproliferative and antineoplastic activities, results that have positioned them as an alternative for cancer treatment. Because DNA is one of their principal targets, it is of our interest to find out the effect of substituents on the diiamine ligands over mode of interaction. Therefore, we studied 21 Casiopeinas upon DNA by gel electrophoresis, UV-vis and circular dichroism (CD) spectroscopic techniques, previously studied by DFT calculations and Quantitative Structure-Activity Relationship (QSAR). According to electrophoresis results, the interaction modes between Casiopeinas with DNA may be through the intercalation or in the minor groove. UV-vis spectroscopy showed a hypochromic or hyperchromic effect as a consequence of each interaction. The analysis suggests the binding along the minor groove and intercalation are both influenced by the substituents in the diimine ligands and depend on the nature of the secondary moiety (acetylacetonate or glycinate). Additionally, a new band in electrophoresis and CD spectra suggests adducts formation. In general, we prove that molecules with the highest molecular weight, electron donating substituents and glycinate as secondary ligand are intercalating agents; unlike molecules with electron withdrawing substituents as chloride or nitro and acetylacetonate as secondary ligand which interact in the minor groove.
Assuntos
Cobre , DNA , Dicroísmo Circular , Cobre/química , DNA/química , Eletroforese , LigantesRESUMO
The knowledge of the metabolic processes of designed metallodrugs for cancer treatment is an area that has been not profoundly studied. Casiopeina IIgly (CasIIgly), which belongs to the Casiopeínas® family, is a copper (II) coordination compound that has shown good biological activity against several cancer cells, low toxicity in normal cells, and antineoplastic activity in in vivo murine and xenografted models. In this work we employed a triple-negative highly metastatic breast carcinoma line (MDA-MB-231), which is one of the cancer types with a great mortality index, for 1H-NMR metabolomic analysis using cisplatin and CasIIgly, in order to quantify the effect of metallodrugs in the metabolic profile of this cell tumor line as a consequence of treatment at different times. Our findings indicate that cisplatin mainly contributes to phospholipid biosynthesis while CasIIgly affects processes such as carbohydrates and nucleotides metabolism. Also, we observed that CasIIgly treatment has an important and fast effect over MDA-MB-231 cell metabolism, which makes it a good alternative for treatment in this type of cancer.
RESUMO
Diruthenium(II,III) metal-metal multiply bonded paddlewheel complexes bearing non-steroidal anti-inflammatory drugs are promising anticancer metallodrugs. The [Ru2(Ibp)4Cl] (Ibp, ibuprofenate anion from HIbp ibuprofen drug), free or encapsulated, shows anticancer activity against glioblastoma (in vitro, in vivo), and against human breast and prostate cancer cells. Herein we report the interaction of [Ru2(Ibp)4Cl] and of [Ru2(Ac)4(H2O)2]PF6 (Ac, acetate) with the 4-aminopyridine (4Apy) drug. The N-ligand was capable of cleaving the paddlewheel unit with oxidation of Ru2(II,III) to Ru2(III,III)O µ-oxo core in the ibuprofen complex while the acetate complex underwent axial substitution of water by 4Apy. Carefully designed synthetic and chromatographic methods succeeded in giving the novel [Ru2O(Ibp)2(4Apy)6]Cl2 metallodrug, the first diruthenium(III,III) µ-oxo having chloride as counterion. Characterization was performed by elemental analysis, mass spectrometry, thermogravimetric analysis, electronic absorption and vibrational spectroscopies, molar conductivity and cyclic voltammetry. Kinetic studies for the µ-oxo complex (in 50:50 v/v ethanol:water) suggested an aquation/complexation equilibrium in consecutive step reactions with the exchange of the two 4Apy trans to the µ-oxo bridge by water (aquation) and the back coordination of 4Apy in excess of the N-ligand (complexation). Trypan blue assays for the novel compound showed time- and dose- dependent antiproliferative effects (at 5-50 µmol L-1) and cytotoxicity (> 20 µmol L-1), and MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide) assays gave IC50 value of 7.6 ± 1.5 µmol L-1 (at 48 h, 1-20 µmol L-1) against U87MG human glioblastoma cells (aggressive brain glioma cancer) pointing the metallodrug as potential candidate for novel therapies in gliomas.
Assuntos
Antineoplásicos/farmacologia , Complexos de Coordenação/farmacologia , Ibuprofeno/análogos & derivados , Ibuprofeno/farmacologia , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/síntese química , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Cinética , Rutênio/químicaRESUMO
A member of cathepsin enzymes called Cathepsin B is a cysteine-protease enzyme that plays significant role in metalloproteinase regulation. Cathepsin B stands out amidst other members of cathepsin because of its role in both normal body physiology and pathophysiology. Being an antiapoptotic and a pro-apoptotic agent, Cathepsin B has been reported to have deleterious effects, especially when its expression, activities, and distribution are outrageous. The over-expression of cathepsin B is traceable to dysregulation of one or more regulated steps involved in its synthesis. Consequently, the over-expression of cathepsin B contributes to the pathogenesis of different types of cancers - a global menace. Interestingly, the synthesis of this enzyme has been reported to be inhibited by several metal compounds, thus, curbing its involvement in carcinogenesis. In this review, the synthesis, structure, localization, and roles of cathepsin B in carcinogenesis were explored. Likewise, we also discussed the capacity of metallic compounds to inhibit this enzyme. Metals such as gold, ruthenium, palladium, Iridium, and Tellurium demonstrated remarkable activity toward cathepsin B of different modes. A relationship between cytotoxicity and inhibition constants was observed.
Assuntos
Catepsina B/metabolismo , Complexos de Coordenação/química , Inibidores de Cisteína Proteinase/química , Neoplasias/patologia , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Catepsina B/antagonistas & inibidores , Catepsina B/química , Sobrevivência Celular/efeitos dos fármacos , Complexos de Coordenação/metabolismo , Complexos de Coordenação/farmacologia , Complexos de Coordenação/uso terapêutico , Inibidores de Cisteína Proteinase/metabolismo , Inibidores de Cisteína Proteinase/farmacologia , Inibidores de Cisteína Proteinase/uso terapêutico , Humanos , Metais/química , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Relação Estrutura-AtividadeRESUMO
The cis-[Ru(bpy)2(Met)](PF6)2 complex, where Met = L-methionine and bpy = 2,2'-bipyridine, was prepared and fully characterized. This complex was subjected to blue and green light photolysis (453 and 505 nm, respectively) in aqueous solution, leading to the release of methionine and formation of the cis-[Ru(bpy)2(H2O)2]2+ ion. This latter photoproduct was shown to subsequently interact with DNA, while DNA photocleavage was noticed. In agreement with these reactivities, this compound exhibited an exciting antibacterial action, particularly against Gram-positive bacteria Staphylococcus aureus and Staphylococcus epidermidis, which was enhanced upon blue light irradiation. Altogether, these results showed that our strategy was successful in producing light-triggered DNA-binding agents with pharmacological potential and a likely blocking reagent for efficient peptide chemistry formation.
Assuntos
Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia , Metionina/farmacologia , Rutênio/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus epidermidis/efeitos dos fármacos , Animais , Antibacterianos/síntese química , Antibacterianos/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , DNA/efeitos dos fármacos , Clivagem do DNA , Luz , Masculino , Metionina/química , Testes de Sensibilidade Microbiana , Processos Fotoquímicos , Rutênio/química , Salmão , Espermatozoides/químicaRESUMO
The emergence of strains of Mycobacterium tuberculosis resistant to isoniazid (INH) has underscored the need for the development of new anti-tuberculosis agents. INH is activated by the mycobacterial katG-encoded catalase-peroxidase, forming an acylpyridine fragment that is covalently attached to the C4 of NADH. This isonicotinyl-NAD adduct inhibits the activity of 2-trans-enoyl-ACP(CoA) reductase (InhA), which plays a role in mycolic acid biosynthesis. A metal-based INH analog, Na3[FeII(CN)5(INH)]·4H2O, IQG-607, was designed to have an electronic redistribution on INH moiety that would lead to an intramolecular electron transfer to bypass KatG activation. HPLC and EPR studies showed that the INH moiety can be oxidized by superoxide or peroxide yielding similar metabolites and isonicotinoyl radical only when associated to IQG-607, thereby supporting redox-mediated drug activation as a possible mechanism of action. However, IQG-607 was shown to inhibit the in vitro activity of both wild-type and INH-resistant mutant InhA enzymes in the absence of KatG activation. IQG-607 given by the oral route to M. tuberculosis-infected mice reduced lung lesions. Experiments using early and late controls of infection revealed a bactericidal activity for IQG-607. HPLC and voltammetric methods were developed to quantify IQG-607. Pharmacokinetic studies showed short half-life, high clearance, moderate volume of distribution, and low oral bioavailability, which was not altered by feeding. Safety and toxic effects of IQG-607 after acute and 90-day repeated oral administrations in both rats and minipigs showed occurrence of mild to moderate toxic events. Eight multidrug-resistant strains (MDR-TB) were resistant to IQG-607, suggesting an association between katG mutation and increasing MIC values. Whole genome sequencing of three spontaneous IQG-607-resistant strains harbored katG gene mutations. MIC measurements and macrophage infection experiments with a laboratorial strain showed that katG mutation is sufficient to confer resistance to IQG-607 and that the macrophage intracellular environment cannot trigger the self-activation mechanism. Reduced activity of IQG-607 against an M. tuberculosis strain overexpressing S94A InhA mutant protein suggested both the need for KatG activation and InhA as its target. Further efforts are suggested to be pursued toward attempting to translate IQG-607 into a chemotherapeutic agent to treat tuberculosis.
RESUMO
The ruthenium(II) compounds cis-[Ru(bpy)2(4-bzpy)(CO)](PF6)2 (I) and cis-[Ru(bpy)2(4-bzpy)(Cl)](PF6) (II) (4-bzpy=4-benzoylpyridine, bpy=2,2'-bipyridine) were synthesized and characterized by spectroscopic and electrochemical techniques. The crystal structure of II was determined by X-ray diffraction. The photochemical behavior of I in aqueous solution shows that irradiation with ultraviolet light (365nm) releases both CO and 4-bzpy leading to the formation of the cis-[Ru(bpy)2(H2O)2]2+ ion as identified by NMR and electronic spectroscopy. Carbon monoxide release was confirmed with the myoglobin method and by gas chromatographic analysis of the headspace. CO release was not observed when aqueous I was irradiated with blue light (453nm). Changes in the electronic and 1H NMR spectra indicate that I undergoes photoaquation of 4-bzpy to form cis-[Ru(bpy)2(CO)(H2O)]2+. Blue light irradiation of aqueous II released the coordinated 4-bzpy to give the cis-[Ru(bpy)2(H2O)(Cl)]2+ ion. When the latter reaction was carried out in the presence of the nucleobase guanine, Ru-guanine adducts were formed, indicating that the metal containing photoproduct may also participate in biologically relevant reactions. The photochemical behavior of I indicates that it can release either CO or 4-bzpy depending on the wavelength chosen, a feature that may have therapeutic application.
Assuntos
2,2'-Dipiridil/síntese química , Luz , Fotoquímica/métodos , Piridinas/química , Compostos de Rutênio/química , Monóxido de Carbono/química , Cristalografia por Raios X , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Difração de Raios XRESUMO
The metallodrug chloridotetrakis(ibuprofenato)diruthenium(II,III) ([Ru2(Ibp)4Cl] or RuIbpCl (1), Ibp=carboxylate anion derived from the non-steroidal anti-inflammatory drug ibuprofen) has shown promising results in vitro and in vivo, which point to its potential as an inhibitor of glioma tumour growth in vivo. In order to get insight into the influence of structural changes on the biological response of the metallodrug, the [Ru2(Ibp)4] metal-metal multiply bonded paddlewheel unit was modified for the axial ligand. Two new analogues, [Ru2(Ibp)4(CF3SO3)] (2) and [Ru2(Ibp)4(EtOH)2]PF6 (3), were synthesized and fully characterized by elemental analysis, ESI-MS, vibrational (FTIR, Raman) and electronic (UV/VIS/NIR) spectroscopy, magnetic susceptibility, molar conductivity measurements, and thermal analysis. RuIbpCl was re-prepared and complementary characterization to previous work was performed. The three axially-modified RuIbp metallodrugs were compared for their effects on U87MG and A172 human glioma cell proliferation, apoptosis, mitosis, and cell migration in vitro. The results provide evidence that the chloride ligand in RuIbpCl may play key role in the mode of action of the metallodrug, since the best results for antiproliferative activity were found for (1) in both types of human glioma cells. All the metallodrugs, (1), (2) and (3), were uptaken by the cells, and were shown to cause increase on number of apoptotic cells and decrease on number of mitotic cells. Additionally, the RuIbp metallodrugs were capable of inhibiting cell migration process in both human glioma cell lines. These data are extremely promising as drugs which can inhibit both cell proliferation/mitosis and inhibit cell migration could target two major chemotherapeutic targets in high grade gliomas.
Assuntos
Antineoplásicos , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Glioma/tratamento farmacológico , Ibuprofeno , Mitose/efeitos dos fármacos , Compostos Organometálicos , Rutênio , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Glioma/metabolismo , Humanos , Ibuprofeno/química , Ibuprofeno/farmacologia , Estrutura Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Compostos Organometálicos/farmacologia , Rutênio/química , Rutênio/farmacologiaRESUMO
This work reports the in vitro activity against Plasmodium falciparumblood forms (W2 clone, chloroquine-resistant) of tamoxifen-based compounds and their ferrocenyl (ferrocifens) and ruthenocenyl (ruthenocifens) derivatives, as well as their cytotoxicity against HepG2 human hepatoma cells. Surprisingly with these series, results indicate that the biological activity of ruthenocifens is better than that of ferrocifens and other tamoxifen-like compounds. The synthesis of a new metal-based compound is also described. It was shown, for the first time, that ruthenocifens are good antiplasmodial prototypes. Further studies will be conducted aiming at a better understanding of their mechanism of action and at obtaining new compounds with better therapeutic profile.
Assuntos
Animais , Humanos , Antimaláricos/farmacologia , Complexos de Coordenação/síntese química , Compostos Ferrosos/farmacologia , Compostos Organometálicos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Rutênio/farmacologia , Antimaláricos/síntese química , Linhagem Celular , Cromatografia em Camada Fina , Complexos de Coordenação/farmacologia , Citotoxinas/farmacologia , Compostos Ferrosos/síntese química , Haplorrinos , /parasitologia , Técnicas In Vitro , Compostos Organometálicos/síntese química , Rutênio/química , Tamoxifeno/químicaRESUMO
Manganese is an essential metal which can be neurotoxic in some instances. As Mn-based metallodrugs are ever more prevalent in clinical practice, concern regarding the toxic effects of Mn discharges to water bodies on the biota prompted us to study the physicochemical parameters of these complexes and to assess their acute toxicity toward adult Danio rerio individuals, particularly in terms of brain tissue damage. Our results show that the Mn(III)-salen acetate complex EUK108 is toxic, which can be rationalized in terms of its lipophilicity, stability and redox activity.
Assuntos
Manganês/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Compostos Organometálicos/toxicidade , Oxirredução , Preparações Farmacêuticas , Medição de Risco , Testes de Toxicidade , Peixe-ZebraRESUMO
Most drugs function by binding reversibly to specific biological targets, and therapeutic effects generally require saturation of these targets. One means of decreasing required drug concentrations is incorporation of reactive metal centers that elicit irreversible modification of targets. A common approach has been the design of artificial proteases/nucleases containing metal centers capable of hydrolyzing targeted proteins or nucleic acids. However, these hydrolytic catalysts typically provide relatively low rate constants for target inactivation. Recently, various catalysts were synthesized that use oxidative mechanisms to selectively cleave/inactivate therapeutic targets, including HIV RRE RNA or angiotensin converting enzyme (ACE). These oxidative mechanisms, which typically involve reactive oxygen species (ROS), provide access to comparatively high rate constants for target inactivation. Target-binding affinity, co-reactant selectivity, reduction potential, coordination unsaturation, ROS products (metal-associated vs metal-dissociated; hydroxyl vs superoxide), and multiple-turnover redox chemistry were studied for each catalyst, and these parameters were related to the efficiency, selectivity, and mechanism(s) of inactivation/cleavage of the corresponding target for each catalyst. Important factors for future oxidative catalyst development are 1) positioning of catalyst reduction potential and redox reactivity to match the physiological environment of use, 2) maintenance of catalyst stability by use of chelates with either high denticity or other means of stabilization, such as the square planar geometric stabilization of Ni- and Cu-ATCUN complexes, 3) optimal rate of inactivation of targets relative to the rate of generation of diffusible ROS, 4) targeting and linker domains that afford better control of catalyst orientation, and 5) general bio-availability and drug delivery requirements.