Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36231928

RESUMO

Mercury is a metal present in the Earth's crust, but due to human contribution, its concentration can increase, causing environmental impacts to aquatic ecosystems, among others. The Reis Magos River Hydrographic Basin represents economic and socio-environmental importance for the state of Espírito Santo, Brazil. However, there are not many publications regarding the quality of water and sediments, so no data is reported concerning the total concentration of Hg. Thus, the present work aimed to evaluate the distribution of total Hg in water and sediments along this hydrographic basin. For a better inference, physicochemical parameters of the water were determined (temperature, pH, electrical conductivity, oxidation-reduction potential (ORP), turbidity, dissolved oxygen (DO), total dissolved solids (TDS), and salinity), and in the sediments, the contents of matter organic matter, pH, carbonates and granulometry. Mercury determination was performed by Thermodecomposition and Amalgamation Atomic Absorption Spectrometry (TDA AAS) with a DMA-80 spectrometer. The Hg determined in the water was lower than the limit of quantification, 0.14 µg∙L-1, which is lower than the maximum limits recommended by world reference environmental agencies. In the sediment samples, the Hg found were below 170 µg∙kg-1, values below which there is less possibility of an adverse effect on the biota. However, when the degree of anthropic contribution was evaluated using the Geoaccumulation index (IGeo), the contamination factor (CF), and the ecological risk potential index (EF), there was evidence of moderate pollution. Thus, this highlighted the need for monitoring the region since climatic variations and physical-chemical parameters influence the redistribution of Hg between the water/sediment interface.


Assuntos
Mercúrio , Metais Pesados , Poluentes Químicos da Água , Brasil , Ecossistema , Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Humanos , Mercúrio/análise , Metais Pesados/análise , Oxigênio/análise , Rios/química , Água/análise , Poluentes Químicos da Água/análise
2.
Carbohydr Polym ; 207: 747-754, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30600061

RESUMO

Mercury is a heavy metal highly deleterious for the environment being associated to several diseases. Thus, novel and expedite techniques capable of detecting this heavy metal in water, even at trace levels, are highly sought for human and environmental safety purposes. Here we developed a novel electrochemical sensor for detecting mercury(II) using a green hybrid nanoarchitecture composed of reduced graphene oxide (rGO), cellulose nanowhiskers (CNW) and polyamide 6 (PA6) electrospun nanofibers. Scanning transmission electron microscopy (STEM), ultraviolet-visible (UV-VIS) absorption and Fourier transform infrared (FTIR) spectroscopies and termogravimetric analysis (TGA) were employed to elucidate the morphology and composition of CNW:rGO hybrid system. The hybrid composite proved to enhance charge transference properties, which was evaluated by cyclic voltammetry (CV) experiments. Due to the excellent electrical properties of graphene, the nanocomposite (PA6/CNW:rGO) was applied in the electrochemical detection of very low concentrations of mercury in water samples, improving the sensor sensibility. Moreover, the PA6/CNW/rGO electrode demonstrated stability, high selectivity, low detection limit and wide dynamic linear range for the detection of mercury(II).


Assuntos
Celulose/química , Grafite/química , Mercúrio/análise , Nanocompostos/química , Nanofibras/química , Óxidos/química , Fibra de Algodão , Água Potável/análise , Técnicas Eletroquímicas/métodos , Gossypium/química , Limite de Detecção , Oxirredução , Rios/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA