Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Horm Cancer ; 11(2): 117-127, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32077034

RESUMO

Glioblastomas (GBM) are the most frequent and aggressive primary tumor of the central nervous system. In recent years, it has been proposed that sex hormones such as progesterone play an essential role in GBM biology. Membrane progesterone receptors (mPRs) are a group of G protein-coupled receptors with a wide distribution and multiple functions in the organism. There are five mPRs subtypes described in humans: mPRα, mPRß, mPRγ, mPRδ, and mPRε. It has been reported that human-derived GBM cells express the mPRα, mPRß, and mPRγ subtypes, and that progesterone promotes GBM progression in part by mPRα specific activation; however, it is still unknown if mPRδ and mPRε are also expressed in this type of tumor cells. In this study, we characterized the expression and hormonal regulation of mPRδ and mPRε in human GBM cells. We also analyzed a set of biopsies from TCGA. We found that the expression of these receptors is dependent on the tumor's grade and that mPRδ expression is directly correlated to patients' survival while the opposite is observed for mPRε. By RT-qPCR, Western blot, and immunofluorescence, the expression of mPRδ and mPRε was detected for the first time in human GBM cells. An in silico analysis showed possible progesterone response elements in the promoter regions of mPRδ and mPRε, and progesterone treatments downregulated the expression of these receptors. Our results suggest that mPRδ and mPRε are expressed in human GBM cells and that they are relevant to GBM biology.


Assuntos
Neoplasias Encefálicas/metabolismo , Glioblastoma/metabolismo , Receptores de Progesterona/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Regulação para Baixo , Feminino , Glioblastoma/genética , Glioblastoma/patologia , Humanos , Masculino , Gradação de Tumores , Prognóstico , Receptores de Progesterona/biossíntese , Receptores de Progesterona/genética
2.
Steroids ; 152: 108496, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31521709

RESUMO

Progesterone (P4) has controversial physiological effects on the regulation of the lactotroph population. While some studies have shown a negative role for P4 in prolactin secretion and lactotroph proliferation, antagonizing estradiol effects, others demonstrated a proliferative role of P4 at the pituitary level. Usually, progesterone actions in the pituitary gland were studied through their classical, genomic pathways triggered by nuclear progesterone receptors (nPRs). However, in 2003, the scene became more complex with the discovery of another group of progesterone receptors involved in rapid, non-genomic P4 effects: the membrane progesterone receptors (mPRs), which are members of the progesterone and adipoQ receptor (PAQR) family. This review examines the historical background and current data on the study of progesterone actions on PRL secretion providing new evidence of P4 effects at the hypothalamic and at the pituitary level through non-classic P4-receptors. In addition, we explore the role of progesterone in the development of experimental prolactinomas, a controversial topic in the literature.


Assuntos
Neoplasias Hipofisárias/metabolismo , Progesterona/metabolismo , Prolactina/metabolismo , Prolactinoma/metabolismo , Animais , Humanos
3.
Endocr Relat Cancer ; 26(5): 497-510, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30856609

RESUMO

Membrane progesterone receptors are known to mediate rapid nongenomic progesterone effects in different cell types. Recent evidence revealed that mPRα is highly expressed in the rat pituitary, being primarily localized in lactotrophs, acting as an intermediary of P4-inhibitory actions on prolactin secretion. The role of mPRs in prolactinoma development remains unclear. We hypothesize that mPR agonists represent a novel tool for hyperprolactinemia treatment. To this end, pituitary expression of mPRs was studied in three animal models of prolactinoma. Expression of mPRs and nuclear receptor was significantly decreased in tumoral pituitaries compared to normal ones. However, the relative proportion of mPRα and mPRß was highly increased in prolactinomas. Interestingly, the selective mPR agonist (Org OD 02-0) significantly inhibited PRL release in both normal and tumoral pituitary explants, displaying a more pronounced effect in tumoral tissues. As P4 also regulates PRL secretion indirectly, by acting on dopaminergic neurons, we studied mPR involvement in this effect. We found that the hypothalamus has a high expression of mPRs. Interestingly, both P4 and OrgOD 02-0 increased dopamine release in hypothalamus explants. Moreover, in an in vivo treatment, that allows both, pituitary and hypothalamus actions, the mPR agonist strongly reduced the hyperprolactinemia in transgenic females carrying prolactinoma. Finally, we also found and interesting gender difference: males express higher levels of pituitary mPRα/ß, a sex that does not develop prolactinoma in these mice models. Taken together, these findings suggest mPRs activation could represent a novel tool for hyperprolactinemic patients, especially those that present resistance to dopaminergic drugs.


Assuntos
Neoplasias Hipofisárias/prevenção & controle , Progesterona/farmacologia , Prolactina/metabolismo , Prolactinoma/prevenção & controle , Receptores de Dopamina D2/fisiologia , Receptores de Progesterona/agonistas , Animais , Gonadotropina Coriônica Humana Subunidade beta/genética , Gonadotropina Coriônica Humana Subunidade beta/metabolismo , Feminino , Humanos , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Hipofisárias/etiologia , Neoplasias Hipofisárias/patologia , Prolactinoma/etiologia , Prolactinoma/patologia , Ratos , Transdução de Sinais
4.
J Neuroendocrinol ; 30(9): e12614, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29869822

RESUMO

The membrane progesterone receptors (mPRα, mPRß, mPRγ, mPRδ and mPRε) are known to mediate rapid nongenomic progesterone functions in different cell types. However, the functions of these receptors in the pituitary have not been reported to date. In the present study, we show that the expression of mPRα was the highest among the mPRs in the rat anterior pituitary gland. Immunostaining of mPRα was detected in somatotrophs, gonadotrophs and lactotrophs. Interestingly, 63% of mPRα-positive cells within the pituitary were lactotrophs, suggesting that mPRα is involved in controlling prolactin (PRL) secretion in the pituitary. To test this hypothesis, rat pituitaries were incubated (1 hour) with either progesterone (P4) or the mPRα-specific agonist Org OD 02-0. PRL secretion was then measured by radioimmunoassay. The results of this experiment revealed that both P4 and Org OD 02-0 decreased PRL secretion. Moreover, the results from the GH3 cell line (CCL-82.1) showed that P4 and Org OD 02-0 inhibited PRL release, although the nuclear PR agonist R5020 was ineffective. Our investigation of the cellular mechanisms behind mPRα activity indicated that both P4 and Org OD 02-0 decreased cAMP accumulation, whereas R5020 was ineffective. In addition, the Org OD 02-0-effect on PRL release was blocked by pretreatment with pertussis toxin, an inhibitor of Go/Gi proteins. Because transforming growth factor (TGF)ß1 is a potent inhibitor of PRL secretion in lactotrophs, we lastly evaluated whether TGFß1 was activated by progesterone and whether this effect was mediated by mPRα. Our results showed that P4 and Org OD 02-0, but not R5020, increased active TGFß1 levels. This effect was not observed when cells were transfected with mPRα-small interfering RNA. Taken together, these data provide new evidence suggesting that mPRα mediates the progesterone inhibitory effect on PRL secretion through both decreases in cAMP levels and activation of TGFß1 in the lactotroph population.


Assuntos
Adeno-Hipófise/metabolismo , Progesterona/farmacologia , Prolactina/metabolismo , Receptores de Progesterona/metabolismo , Animais , Linhagem Celular , Feminino , Adeno-Hipófise/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptores de Progesterona/agonistas
5.
Mol Cell Endocrinol ; 434: 166-75, 2016 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-27368976

RESUMO

Progesterone is a sexual steroid hormone that has a critical role in reproductive processes in males and females of several species, including humans. Furthermore, progesterone has been associated with pathological diseases such as breast, gynecological and brain cancer, regulating cell proliferation, apoptosis, and metastasis. In the past, progesterone actions were thought to be only mediated by its intracellular receptor (PR). However, recent evidence has demonstrated that membrane progesterone receptors (mPRs) mediate most of the non-classical progesterone actions. The role of the different mPRs subtypes in progesterone effects in reproduction and cancer is an emerging and exciting research area. Here we review studies to date regarding mPRs role in reproduction and cancer and discuss their functions and clinical relevance, suggesting mPRs as putative pharmacological targets and disease markers in cancer and diseases associated with reproduction.


Assuntos
Membrana Celular/metabolismo , Neoplasias/metabolismo , Receptores de Progesterona/metabolismo , Reprodução , Animais , Feminino , Humanos , Masculino , Progesterona/metabolismo , Transdução de Sinais
6.
J Steroid Biochem Mol Biol ; 154: 176-85, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26275946

RESUMO

Progesterone (P) participates in the regulation of the growth of several tumors, including astrocytomas, the most common and malignant human brain tumors. It has been reported that P induces astrocytomas growth in part by its interaction with its intracellular receptors (PR). Recently, it has been reported that membrane progesterone receptors (mPRs) are expressed in ovarian and breast cancer cells, and that P could exert some actions through these receptors, however, it is unknown whether mPRs are expressed in astrocytomas. In this work, U251 and U87 cell lines derived from human astrocytomas grade IV were used to study the expression, localization and hormonal regulation of three mPRs subtypes. Using RT-qPCR and Western blot techniques, we found that mPRα and mPRß are clearly expressed at mRNA and protein levels in astrocytoma cells whereas mPRγ was barely expressed in these cells. Immunofluorescence staining showed that mPRα and mPRß were mainly located in the cell surface. Flow cytometry assays demonstrated that in U251 and U87 cells, mPRß is expressed by a higher percentage of both permeabilized and non-permeabilized cells as compared with mPRα. The percentage of cells expressing mPRγ was very low. P and estradiol (E) (10, 100 nM and 1 µM) decreased mPRα protein content at 12 h. In contrast, both P (100 nM and 1 µM) and E (10 and 100 nM) increased mPRß content. Finally, by in silico analysis, we identified that mPRα, mPRß and mPRγ promoters contain several progesterone and estrogen response elements. Our results indicate that mPRs are expressed in human astrocytoma cells, exhibiting a differential regulation by E and P. These data suggest that some P actions in astrocytoma cells may be mediated by mPRs.


Assuntos
Astrocitoma/metabolismo , Proteínas de Membrana/metabolismo , Receptores de Progesterona/metabolismo , Astrocitoma/patologia , Linhagem Celular Tumoral , Humanos , Regiões Promotoras Genéticas , RNA Mensageiro/genética , Receptores de Progesterona/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA