Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(38): 50398-50410, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39093390

RESUMO

This study comparatively evaluated effluent reuse from two TWs-a horizontal subsurface flow (HF) and a vertical subsurface flow (VF)-used for rural wastewater treatment in Central Chile during the initial operation stage. The two TWs were planted with Zantedeschia aethiopica and were operated for 10 months at a pilot scale. The water quality of the influent and effluents was measured and compared with reuse regulations. The results showed similarities in the behavior of the effluents from the two TWs, presenting differences only in the chemical oxygen demand (COD) and different forms of nitrogen, suggesting the necessity of complementary treatment stages or modifications to the operation. The effluents from the HF better fulfilled the reuse standards for irrigation, as the VF faced problems associated with its size. However, a complementary disinfection system is necessary to improve pathogen removal in the effluents coming from the two TWs, especially to be reused as irrigation water for crops. Finally, this work showed the potential for applying subsurface TWs for wastewater treatment in rural areas and reusing their effluents as irrigation water, practice that can contribute to reducing the pressure on water resources in Chile, and that can be used as an example for other countries facing similar problems.


Assuntos
Agricultura , Eliminação de Resíduos Líquidos , Águas Residuárias , Purificação da Água , Áreas Alagadas , Chile , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Análise da Demanda Biológica de Oxigênio , Qualidade da Água
2.
Biol Res ; 56(1): 35, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355658

RESUMO

BACKGROUND: High mountainous environments are of particular interest as they play an essential role for life and human societies, while being environments which are highly vulnerable to climate change and land use intensification. Despite this, our knowledge of high mountain soils in South America and their microbial community structure is strikingly scarce, which is of more concern considering the large population that depends on the ecosystem services provided by these areas. Conversely, the Central Andes, located in the Mediterranean region of Chile, has long been studied for its singular flora, whose diversity and endemism has been attributed to the particular geological history and pronounced environmental gradients in short distances. Here, we explore soil properties and microbial community structure depending on drainage class in a well-preserved Andean valley on the lower alpine vegetation belt (~2500 m a.s.l.) at 33.5˚S. This presents an opportunity to determine changes in the overall bacterial community structure across different types of soils and their distinct layers in a soil depth profile of a highly heterogeneous environment. METHODS: Five sites closely located (<1.5 km) and distributed in a well preserved Andean valley on the lower alpine vegetation belt (~2500 m a.s.l.) at 33.5˚S were selected based on a pedological approach taking into account soil types, drainage classes and horizons. We analyzed 113 soil samples using high-throughput sequencing of the 16S rRNA gene to describe bacterial abundance, taxonomic composition, and co-occurrence networks. RESULTS: Almost 18,427 Amplicon Sequence Variant (ASVs) affiliated to 55 phyla were detected. The bacterial community structure within the same horizons were very similar validating the pedological sampling approach. Bray-Curtis dissimilarity analysis revealed that the structure of bacterial communities in superficial horizons (topsoil) differed from those found in deep horizons (subsoil) in a site-specific manner. However, an overall closer relationship was observed between topsoil as opposed to between subsoil microbial communities. Alpha diversity of soil bacterial communities was higher in topsoil, which also showed more bacterial members interacting and with higher average connectivity compared to subsoils. Finally, abundances of specific taxa could be considered as biological markers in the transition from topsoil to subsoil horizons, like Fibrobacterota, Proteobacteria, Bacteroidota for shallower soils and Chloroflexi, Latescibacterota and Nitrospirota for deeper soils. CONCLUSIONS: The results indicate the importance of the soil drainage conditions for the bacterial community composition, suggesting that information of both structure and their possible ecological relationships, might be useful in clarifying the location of the edge of the topsoil-subsoil transition in mountainous environments.


Assuntos
Bactérias , Microbiota , Humanos , RNA Ribossômico 16S/genética , Bactérias/genética , Solo/química , Proteobactérias/genética , Microbiologia do Solo
3.
Animals (Basel) ; 12(8)2022 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-35454221

RESUMO

For a simple, non-invasive evaluation of nutritional status of sheep kept under extensive grazing conditions on annual rangeland, fecal indices (2,6 diaminopimelic acid, nitrogen, and phosphorus) obtained during the vegetative, reproductive, and dry grassland phenological stages, were correlated with ruminal physiological biomarkers (volatile fatty acids and ruminal ammonia). Through correlation analysis and linear regressions, the degree of association between the variables studied was established. The fecal indices that presented the highest degree of association with ruminal variables were FN and FP, being highly correlated with the production of branched-chain volatile fatty acids (isobutyrate and isovalerate) and with ruminal ammonia (r ≥ 0.65), establishing simple linear regression equations of high significance (p ≤ 0.05). Therefore, fecal indices, especially fecal concentrations of N and P, could reflect the metabolism at the ruminal level and with it the availability of compounds for microbial growth, which would help to establish the nutritional status of sheep herds under extensive grazing conditions.

4.
Plants (Basel) ; 10(3)2021 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-33809230

RESUMO

Water deficit represents an important challenge for wheat production in many regions of the world. Accumulation and remobilization of water-soluble carbohydrates (WSCs) in stems are part of the physiological responses regulated by plants to cope with water stress and, in turn, determine grain yield (GY). The genetic mechanisms underlying the variation in WSC are only partially understood. In this study, we aimed to identify Single Nucleotide Polymorphism (SNP) markers that account for variation in a suite of WSC and GY, evaluated in 225 cultivars and advanced lines of spring wheat. These genotypes were established in two sites in the Mediterranean region of Central Chile, under water-limited and full irrigation conditions, and assessed in two growing seasons, namely anthesis and maturity growth periods. A genome-wide association study (GWAS) was performed by using 3243 SNP markers. Genetic variance accounted for 5 to 52% of phenotypic variation of the assessed traits. A rapid linkage disequilibrium decay was observed across chromosomes (r2 ≤ 0.2 at 2.52 kbp). Marker-trait association tests identified 96 SNPs related to stem weight (SW), WSCs, and GY, among other traits, at the different sites, growing seasons, and growth periods. The percentage of SNPs that were part of the gene-coding regions was 34%. Most of these genes are involved in the defensive response to drought and biotic stress. A complimentary analysis detected significant effects of different haplotypes on WSC and SW, in anthesis and maturity. Our results evidence both genetic and environmental influence on WSC dynamics in spring wheat. At the same time, they provide a series of markers suitable for supporting assisted selection approaches and functional characterization of genes.

5.
Ambio ; 48(4): 350-362, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30128860

RESUMO

In January 2017, hundreds of fires in Mediterranean Chile burnt more than 5000 km2, an area nearly 14 times the 40-year mean. We contextualize these fires in terms of estimates of global fire intensity using MODIS satellite record, and provide an overview of the climatic factors and recent changes in land use that led to the active fire season and estimate the impact of fire emissions to human health. The primary fire activity in late January coincided with extreme fire weather conditions including all-time (1979-2017) daily records for the Fire Weather Index (FWI) and maximum temperature, producing some of the most energetically intense fire events on Earth in the last 15-years. Fire activity was further enabled by a warm moist growing season in 2016 that interrupted an intense drought that started in 2010. The land cover in this region had been extensively modified, with less than 20% of the original native vegetation remaining, and extensive plantations of highly flammable exotic Pinus and Eucalyptus species established since the 1970s. These plantations were disproportionally burnt (44% of the burned area) in 2017, and associated with the highest fire severities, as part of an increasing trend of fire extent in plantations over the past three decades. Smoke from the fires exposed over 9.5 million people to increased concentrations of particulate air pollution, causing an estimated 76 premature deaths and 209 additional admissions to hospital for respiratory and cardiovascular conditions. This study highlights that Mediterranean biogeographic regions with expansive Pinus and Eucalyptus plantations and associated rural depopulation are vulnerable to intense wildfires with wide ranging social, economic, and environmental impacts, which are likely to become more frequent due to longer and more extreme wildfire seasons.


Assuntos
Incêndios , Pinus , Chile , Secas , Humanos , Tempo (Meteorologia)
6.
F1000Res ; 7: 1446, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30542617

RESUMO

Data on the germination rates of four tree species, natively founded in the Chilean Mediterranean-climate zone, were determined by germination in crop chambers. The obtained data were used to interpolate or extrapolate the time taken for 50% of seeds to germinate in each case. These results are useful for regional native forest research and, in a broad sense, for its use in models to study germination dynamics in Mediterranean-climate zones.


Assuntos
Caesalpinia , Prosopis , Chile , Florestas , Germinação , Quillaja , Sementes , Árvores
7.
Front Plant Sci ; 8: 1097, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28729869

RESUMO

Rare species frequently occur in areas with microclimatic conditions that are atypical for their regions, but that were more common in the past, and that probably have operated as climatic refugia for a long time. Myrceugenia correifolia is a rare arboreal species that grows in deep canyons and hilltops of the Coast Range of north-central Chile between 30° and 35°S. In the northern edge of its distribution M. correifolia grows in small patches of fog-dependent forest surrounding by xeric vegetation. These forest formations are thought to be remnants of an ancient and continuous rainforest that according to some authors became fragmented during aridization of the Neogene (Neogene relict) and to others during warm-dry cycles of the Pleistocene (glacial relicts). Here we asked whether the northernmost populations of M. correifolia are Neogene relicts, glacial relicts, or the result of a recent northward colonization. To answer this question we examined genetic diversity and population divergence of M. correifolia using microsatellite markers, tested various competing population history scenarios with an approximate Bayesian computation (ABC) method, and complemented these data with ecological niche modeling (ENM). We detected three genetic clusters with a distinctive latitudinal pattern (north, center, and south) and high levels of differentiation (FST = 0.36). Demographic inference supported an admixture event 31 kya between two populations that diverged from an ancient population 139 kya. The admixture time coincides with the beginning of a period of wet conditions in north-central Chile that extended from 33 to 19 kya and was preceded by dry and cold conditions. These results suggest that increased precipitation during glacial periods triggered northward expansion of the range of M. correifolia, with subsequent admixture between populations that remained separated during interglacial periods. Accordingly, ENM models showed that suitable habitats for M. correifolia in north-central Chile were larger and less fragmented during the Last Glacial Maximum than at present, suggesting that northernmost populations of this species are glacial relicts.

8.
Int J Biometeorol ; 60(8): 1261-70, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26694490

RESUMO

In order to contribute to the sustainability of the outdoor environment, knowledge about the urban thermal bioclimate should be transferred into climatic guidelines for planning. The general framework of this study responds to the need of analyzing thermal bioclimate in Mediterranean climate regions and its influence as an urban design factor. The paper analyzes the background of the urban climate and thermal bioclimate conditions in Barcelona (Spain), through the effect of shade conditions and wind speed variations. Simulations of shade and wind speed variations were performed to evaluate changes in thermal bioclimate due to modifications in urban morphology. Air temperature, relative humidity, wind speed, and solar radiation for the period from January, 2001 to January, 2015 were used to calculate physiologically equivalent temperature (PET) using the RayMan model. The results demonstrate that shade is the most important strategy to improve urban microclimatic conditions. In Barcelona, human thermal comfort conditions can be improved by shade and wind speed increase in terms of PET above 23 °C and by a wind speed decrease for thresholds of PET below 18 °C. Heat stress situations can be mitigated by shade and wind speed increase in conditions above 35 and 45 °C, respectively. The results of the study are an important contribution for urban planners, due to their possibilities and potential for the description of microclimatic conditions in Mediterranean climate regions. The knowledge is useful for improved human thermal comfort conditions, from the suitable configuration of urban form and architecture.


Assuntos
Planejamento de Cidades , Microclima , Cidades , Humanos , Modelos Teóricos , Espanha , Sensação Térmica , Tempo (Meteorologia)
9.
Plant Biol (Stuttg) ; 16(4): 848-52, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24739103

RESUMO

Crassulacean acid metabolism (CAM) is a photosynthetic pathway found in many plant species from arid and semiarid environments. Few studies aiming to characterise plant species as CAM or C3 account for inter-population differences in photosynthetic pathway, often relying on samples taken from herbarium material and/or a single plant or population. This may be especially problematic for species growing under contrasting climate conditions, as is the case for species with a wide geographic range. We used Puya chilensis, a species previously reported as CAM and C3, to study among-population variation in expression of the CAM pathway within its distribution range, which spans a significant climate gradient. We carried out a wide sampling scheme, including five populations and a combination of analytical methods (quantification of nocturnal acidification and stable isotope measurements). The study populations of P. chilensis encompass the entire latitudinal distribution range, from semi-arid to temperate oceanic climates. Our results indicate that CAM decreased with latitude. However, even in the southern (wetter) populations, where δ13C values were indicative of C3 metabolism, we found some nocturnal acidification. We stress the value of using two methods along with the use of samples from different populations, as this allows more reliable conclusions on the photosynthetic pathway for 'probable' CAM species that face varying climate conditions within their distribution ranges.


Assuntos
Bromeliaceae/metabolismo , Bromeliaceae/fisiologia , Dióxido de Carbono/metabolismo , Secas , Região do Mediterrâneo
10.
Electron. j. biotechnol ; Electron. j. biotechnol;16(4): 5-5, July 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-684020

RESUMO

Background: Constructed wetlands are a promising, cheap and effective wastewater treatment in small communities. The studies on these systems have been reported mainly from cold, tropical or subtropical climate regions. In this work we constructed a pilot plant with six horizontal subsurface flow constructed wetlands (HSSF CWs) with a surface area of 2 m² and a depth of 0.6 m each, planted with Typha latifolia or Scirpus sp., and filled with gravel (G) or fine gravel (FG) of 2.8 and 1.2 cm of diameter respectively, continuously fed with raw domestic wastewater. This experimental setup was evaluated over 280 days for the removal of organic matter and nutrients in a Mediterranean climate, near Valparaíso, Chile. The removal of total COD, NH4+-N and PO4-3-P was calculated, in order to assess by analysis of variance the effect of initial pollutants concentration, air temperature (season) and plant/support combination on the wetlands performance. Results: The Scirpus/FG combination showed the highest average removal of total COD of about 59%, and Typha/FG shows the highest removal of NH4+-N and PO4-3-P (49 and 32%, respectively). Furthermore, the removal of organic matter was independent of influent concentration, while mildly dependent of the season, unlike nutrients removal that was dependent on these two parameters. Media, plant and the plant/media combination influenced positively organic matter, ammonia and phosphorous removal, respectively. Conclusions: Overall, the results demonstrate the potential of wetlands in treatment of wastewater in Mediterranean regions and show how these can help to improve the quality of water in domestic zones without high-throughput technologies.


Assuntos
Poluentes da Água/metabolismo , Purificação da Água/métodos , Águas Residuárias , Fósforo/metabolismo , Chile , Eliminação de Resíduos Líquidos , Clima , Remoção de Contaminantes , Sistemas Alagados Construídos , Amônia/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA