Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Food Chem ; 427: 136720, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-37423046

RESUMO

This work evaluates the effect of high-energy mechanical milling time (7 levels, 20-80 min) on amylose content, crystallinity pattern, temperature and gelatinization enthalpy, morphology, and rheological properties of chayotextle (Sechium edule Sw.) starch. After 30 min of milling, granular structure was affected, and amylose values were the highest while crystallinity and gelatinization enthalpy decreased significantly. These changes allowed to obtain gels with viscoelastic properties where the elastic character (Ç´) prevailed upon the viscous modulus (Ǵ́). Native starch showed Tan δ values of 0.6, increased significantly (0.9) after 30 min of milling due to the surge in linear chains (amylose) and loss of granular structure. Native and modified starches showed high dependence on cutting or shear speed, presenting a non-Newtonian behavior (reofluidizers). These results indicate that mechanical grinding is an alternative to obtain modified starches with applications in the food industry.


Assuntos
Amilose , Amido , Amido/química , Amilose/química , Viscosidade , Temperatura , Termodinâmica , Reologia
2.
Int J Mol Sci ; 24(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37175641

RESUMO

This review aims to expose mechanical milling as an alternative method for generating copper-based particles (copper particles (CuP) and copper composites (CuC)); more specifically, via a top-down or bottom-up approach, on a lab-scale. This work will also highlight the different parameters that can affect the size distribution, the type, and the morphology of the obtained CuP or CuC, such as the type of mechanical mill, ball-to-powder ratios (BPR), the milling speed, milling time, and the milling environment, among others. This review analyzes various papers based on the Cu-based particle generation route, which begins with a pretreatment step, then mechanical milling, its approach (top-down or bottom-up), and the post-treatment. Finally, the characterization methods of the resulting CuP and CuC through mechanical milling are also discussed.


Assuntos
Cobre , Tamanho da Partícula , Pós
3.
Materials (Basel) ; 15(7)2022 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-35407834

RESUMO

Although the dry ice method used to synthesize turbostratic carbon/graphene is little known and used, it has significant advantages over others, such as the following: it is low cost, simple, and a large quantity of material can be obtained using some inorganic and highly available acids (which can be reused). Despite the above advantages, the main reason for its incipient development is the resulting presence of magnesium oxide in the final product. In the present work, three different treatments were tested to remove this remnant using some acid chemical leaching processes, including hydrochloric acid, aqua regia, and piranha solution. Based on the experimental evidence, it was determined that using aqua regia and combining the leaching process with mechanical milling was the most efficient way of removing such a remnant, the residue being only 0.9 wt.%. This value is low compared to that obtained with the other acid leaching solutions and purification processes (2.8-29.6 wt.%). A mandatory high-energy mechanical milling stage was necessary during this treatment to expose and dissolve the highly insoluble oxide without secondary chemical reactions on the turbostratic carbon. High-energy mechanical milling is an effective route to exfoliate graphite, which allows the magnesium oxide to be more susceptible to acid treatment. A yield of turbostratic carbon/graphene of 1 wt.% was obtained from the metallic Mg. The obtained surface area was 504.8 m2g-1; this high value resulting from the intense exfoliation can potentiate the use of this material for a wide variety of applications.

4.
Materials (Basel) ; 14(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919945

RESUMO

Aluminum powder with different C and C-Cu mixtures powders were fabricated by powder metallurgy, using high-energy mechanical milling as a pre-treatment of powders. To evaluate the combined effect of the C-Cu mixture and the process conditions, such as sintering temperature/time and milling time, on the yield stress and hardness, two experimental designs were carried out. The results were analyzed with Minitab Statistical Software using contour plots. From the results, better mechanical properties were found at a Cu/C ratio of 0.33 and samples with high C content (3 wt. %). In samples subject to long sintering time (3 h), the mechanism of precipitation of the second phase was mainly present, resulting in an improvement in mechanical properties. From the difference found between the elastic limit and the microhardness tests, it was found that there was an inefficient sintering process affecting the elastic limit test results. Additionally, X-ray analyses using the Rietveld program, were used for microstructural characterization and mechanical parameters of yield strength and ultimate tensile strength.

5.
Materials (Basel) ; 15(1)2021 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-35009282

RESUMO

Commercially pure (c.p.) titanium grade IV with a bimodal microstructure is a promising material for biomedical implants. The influence of the processing parameters on the physical, microstructural, and mechanical properties was investigated. The bimodal microstructure was achieved from the blends of powder particles with different sizes, while the porous structure was obtained using the space-holder technique (50 vol.% of ammonium bicarbonate). Mechanically milled powders (10 and 20 h) were mixed in 50 wt.% or 75 wt.% with c.p. titanium. Four different mixtures of powders were precompacted via uniaxial cold pressing at 400 MPa. Then, the specimens were sintered at 750 °C via hot pressing in an argon gas atmosphere. The presence of a bimodal microstructure, comprised of small-grain regions separated by coarse-grain ones, was confirmed by optical and scanning electron microscopies. The samples with a bimodal microstructure exhibited an increase in the porosity compared with the commercially available pure Ti. In addition, the hardness was increased while the Young's modulus was decreased in the specimens with 75 wt.% of the milled powders (20 h).

6.
Materials (Basel) ; 12(17)2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450714

RESUMO

Hydrogen storage is widely recognized as one of the biggest not solved problem within hydrogen technologies. The slow development of the materials and systems for hydrogen storage has resulted in a slow spread of hydrogen applications. There are many families of materials that can store hydrogen; among them, the alanate family can be of interest. Basic research papers and reviews have been focused on alanates of group 1 and 2. However, there are many alanates of transition metals, main group, and lanthanides that deserve attention in a review. This work is a comprehensive compilation of all known alanates. The approaches towards tuning the kinetics and thermodynamics of alanates are also covered in this review. These approaches are the formation of reactive composites, double cation alanates, or anion substitution. The crystallographic and X-ray diffraction characteristics of each alanate are presented along with this review. In the final sections, a discussion of the infrared, Raman, and thermodynamics was included.

7.
Rev. peru. biol. (Impr.) ; 23(3): 305-310, Sept.-Dec. 2016. ilus, tab
Artigo em Espanhol | LILACS-Express | LILACS | ID: biblio-1094273

RESUMO

En el presente trabajo se reporta la actividad inhibitoria del crecimiento bacteriano por nanopartículas de cobre cementado y de cobre comercial. Se utilizaron las cepas de Staphylococcus aureus ATCC 6538 (Gram positiva) y Escherichia coli ATCC 35218 (Gram negativa) para determinar el efecto inhibitorio mediante la concentración mínima inhibitoria de las nanopartículas diluidas en caldo de cultivo nutritivo y distribuidas en placas de ELISA. Las muestras de cobre cementado (obtenidas por procesos hidrometalúrgicos) y de cobre comercial fueron nanoestructuradas empleando un equipo de molienda mecánica. Los resultados indican que las nanopartículas de cobre comercial (a 2.5 horas de molienda) muestran acción inhibitoria del crecimiento de la cepa S. aureus y no así en la cepa E. coli. Asimismo, se determinó que la concentración mínima inhibitoria de la muestra de cobre comercial fue de 20 μg/mL frente a S. aureus. El cobre cementado (en su forma sólida y nanoestructurada) no mostró efecto inhibitorio del crecimiento en ninguna de las dos cepas estudiadas.


In this paper, we report on the bacterial growth inhibitory activity of nanoparticles of cemented and commercial copper. Strains of Staphylococcus aureus ATCC 6538 (Gram positive) and Escherichia coli ATCC 35218 (Gram negative) were used to determine the inhibitory effect by the minimal inhibitory concentration of the nanoparticles diluted in nutrient culture broth and distributed in ELISA plates. The copper cements (obtained from hydrometallurgical processes) and the commercial one were nanostructured employing a mechanical milling equipment. The results indicate that commercial copper nanoparticles (after 2.5 hours of milling) show growth inhibitory action of S. aureus strain. However, in the case of E. coli strains no inhibitory action has been observed. It was also determined that the minimal inhibitory concentration of the commercial copper is 20 μg/mL against S. aureus. On the other hand, copper cements (in solid and nanostructured form) do not show inhibitory effects.

8.
Microsc Microanal ; 22(4): 887-901, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27515227

RESUMO

The objective of this work was to obtain Spirulina (Arthrospira maxima) nanoparticles (SNPs) by using high-impact mechanical milling and to characterize them by electron microscopy and spectroscopy techniques. The milling products were analyzed after various processing times (1-4 h), and particle size distribution and number mean size (NMS) were determined by analysis of high-resolution scanning electron microscopic images. The smallest particles are synthesized after 3 h of milling, had an NMS of 55.6±3.6 nm, with 95% of the particles being smaller than 100 nm. High-resolution transmission electron microscopy showed lattice spacing of ~0.27±0.015 nm for SNPs. The corresponding chemical composition was obtained by energy-dispersive X-ray spectroscopy, and showed the presence of Ca, Fe, K, Mg, Na, and Zn. The powder flow properties showed that the powder density was higher when the average nanoparticle size is smaller. They showed free flowability and an increase in their specific surface area (6.89±0.23 m2/g) up to 12-14 times larger than the original material (0.45±0.02 m2/g). Fourier transform infrared spectroscopy suggested that chemical damage related to the milling is not significant.


Assuntos
Microscopia Eletrônica de Transmissão , Nanopartículas/ultraestrutura , Spirulina/ultraestrutura , Nanopartículas/química , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Spirulina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA