Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 463(Pt 1): 141127, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39243625

RESUMO

A trending problem of Extra Virgin Olive Oil (EVOO) adulteration is investigated using two analytical platforms, involving: (1) Near Infrared (NIR) spectroscopy, resulting in a two-way data set, and (2) Fluorescence Excitation-Emission Matrix (EEFM) spectroscopy, producing three-way data. The related instruments were employed to study genuine and adulterated samples. Each data set was first separately analyzed using the Data Driven-Soft Independent Modeling of Class Analogies (DD-SIMCA) method, based on Principal Component Analysis (for the two-way NIR data) and PARallel FACtor analysis (for the three-way EEFM data). The data sets were then processed together using the multi-block fusion method, based on the concept of Cumulative Analytical Signal (CAS). A comparison of the data processing methods in terms of sensitivity, specificity and selectivity showed the following order of excellence: NIR < EEFM < NIR + EEFM. This finding confirms the effectiveness of multi-block data fusion, which cumulatively improves the model performance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA