Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Int J Biol Macromol ; 256(Pt 2): 128418, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38029902

RESUMO

The objective of this study was to immobilize a recombinant ß-galactosidase (Gal) tagged with a cellulose-binding domain (CBD) onto a magnetic core-shell (CS) cellulose system. After 30 min of reaction, 4 U/capsule were immobilized (CS@Gal), resulting in levels of yield and efficiency exceeding 80 %. The optimal temperature for ß-galactosidase-CBD activity increased from 40 to 50 °C following oriented immobilization. The inhibitory effect of galactose decreased in the enzyme reactions catalyzed by CS@Gal, and Mg2+ increased the immobilized enzyme activity by 40 % in the magnetic CS cellulose system. The relative enzyme activity of the CS@Gal was 20 % higher than that of the soluble enzyme activity after 20 min at 50 °C. The CS support and CS@Gal capsules exhibited an average size of 8 ± 1 mm, with the structure of the shell (alginate-pectin-cellulose) enveloping and isolating the magnetic core. The immobilized ß-galactosidase-CBD within the magnetic CS cellulose system retained ∼80 % of its capacity to hydrolyze lactose from skim milk after 10 reuse cycles. This study unveils a novel and promising support for the oriented immobilization of recombinant ß-galactosidase using a magnetic CS system and a CBD tag. This support facilitates ß-galactosidase reuse and efficient separation, consequently enhancing the catalytic properties of the enzyme.


Assuntos
Celulose , Enzimas Imobilizadas , Celulose/química , Enzimas Imobilizadas/química , Catálise , beta-Galactosidase/química , Fenômenos Magnéticos
2.
J Environ Manage ; 345: 118784, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37611517

RESUMO

Magnetic bismuth ferrite (BiFO) microparticles were employed for the first time for the removal of polystyrene (PS) nano/microplastics from the drinking water. BiFO is formed by porous agglomerates with sizes of 5-11 µm, while the PS nano/microparticles have sizes in the range of 70-11000 nm. X-ray diffraction studies demonstrated that the BiFO microparticles are composed of BiFeO3/Bi25FeO40 (the content of Bi25FeO40 is ≈ 8.6%). Drinking water was contaminated with PS nano/microparticles (1 g L-1) and BiFO microparticles were also added to the contaminated water. Later, the mixture of PS-particles + BiFO was irradiated with NIR light (980 nm). Consequently, PS nano/microparticles melted on the BiFO microparticles due to the excessive heating on their surface. At the same time, the NIR (near infrared) light generated oxidizing agents (∙OH and h+), which degraded the by-products formed during the photocatalytic degradation of PS nano/microparticles. Subsequently, the NIR irradiation was stopped, and a Neodymium magnet was utilized to separate the BiFO microparticles from the water. This last procedure also permitted the removal of PS nano/microparticles by physical adsorption. Zeta potential measurements demonstrated that the BiFO surface was positively charged, allowing the removal of the negatively charged PS nano/microparticles by electrostatic attraction. The combination of the photocatalytic process and the physical adsorption permitted a complete removal of PS nano/microparticles after only 90 min as well as a high mineralization of by-products (≈95.5% as confirmed by the total organic carbon measurements). We estimate that ≈23.6% of the PS nano/microparticles were eliminated by photocatalysis and the rest of PS particles (≈76.4%) by physical adsorption. An outstanding adsorption capacity of 195.5 mg g-1 was obtained after the magnetic separation of the BiFO microparticles from the water. Hence, the results of this research demonstrated that using photocatalysis + physical-adsorption is a feasible strategy to quickly remove microplastic contaminants from the water.


Assuntos
Água Potável , Poluentes Químicos da Água , Poliestirenos , Plásticos , Bismuto , Microplásticos , Adsorção , Fenômenos Magnéticos , Poluentes Químicos da Água/análise
3.
Anal Chim Acta ; 1251: 340709, 2023 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-36925273

RESUMO

A procedure of direct magnetic sorbent sampling in flame atomic absorption spectrometry (DMSS-FAAS) was developed in this work. Metal-loaded magnetic sorbents were directly inserted in the flame of the FAAS for direct metal desorption/atomization. Magnetic graphene oxide aerogel (M-GOA) particles were synthesized, characterized, and used as a proof-of-concept in the magnetic dispersive solid phase extraction of Pb2+ ions from water samples. M-GOA was selected because is a light and porous sorbent, with high adsorption capacity, that is quickly burned by the flame. Magnetic particles were directly inserted in the flame by using a metallic magnetic probe, thereby avoiding the need for a chemical elution step. As all the extracted Pb2+ ions arrive to the flame without passing through the nebulization system, a drastic increase in the analytical signal was achieved. The improvement in the sensitivity of the proposed method (DMSS-FAAS) for Pb2+ determination was at least 40 times higher than the conventional procedure in which the Pb2+ is extracted, eluted, and analyzed by conventional flame atomic absorption spectrometry (FAAS) via the nebulization system. The analytical curve was linear from 5.0 to 180.0 µg L-1 and the limit of detection was found to be 1.30 µg L-1. Background measurements were insignificant, and the atomic absorption peaks were narrow and reproducible. Precision assessed as a percentage of the relative standard deviation %RSD was found to be 17.4, 7.1, and 7.8% for 10, 70, and 180 µg L-1 levels, respectively. The method showed satisfactory results even in the presence of other ions (Al3+, Cr3+, Co2+, Cu2+, Fe3+, Mn2+, Ba2+, Mg2+, and Li+). The performance of the new system was also evaluated for Cd2+ ions, as well as by using other magnetic particles available in our lab: magnetic carbon nanotubes (M-CNTs), magnetic restricted access carbon nanotubes (M-RACNT), magnetic poly (methacrylic acid-co-ethylene glycol dimethacrylate) (M-PMA), magnetic nanoparticles coated with orange powder peel (M-OPP), and magnetic nanoparticles covered with SiO2 (M - SiO2). Analytical signals increased for both analytes in all sorbents (increases of about 4-37 times), attesting the high potential and applicability of the proposed method. Simplicity, high analytical frequency, high detectability and reproducibility, low cost, and possibility of being totally mechanized are the most relevant advantages.

4.
J Chromatogr A ; 1663: 462740, 2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-34942489

RESUMO

Human purine nucleoside phosphorylase (HsPNP) catalyzes reversible phosphorolysis of nucleosides and deoxynucleosides in the purine cascade. HsPNP has been a target on behalf of the development of new leads for the treatment of a variety of T-cell mediated disorders. Several studies on the HsPNP are focused on the identification of effective, safe, and selective inhibitors. Therefore, this study describes the development of direct, simple, reliable, and inexpensive enzymatic assays to screen HsPNP inhibitors. Initially, HsPNP was covalently immobilized on the surface of magnetic particles (MPs). Due to the versatility of the MPs as solid support for enzyme immobilization, two different methods to monitor the enzyme activity are presented. Firstly, the activity of HsPNP-MPs was assessed offline by HPLC-DAD quantifying the formed hypoxanthine. Then, HsPNP-MPs were trapped in a peek tube, furnishing a microreactor which was inserted on-flow in an HPLC-DAD system to monitor the enzyme activity by the hypoxanthine quantification. Kinetic assays provided KMapp values for the inosine substrate of 488.2 ± 49.1 and 1084 ± 111 µM for the offline and on-flow assays, respectively. For the first time, kinetic studies for Pi as substrate using the HsPNP-MPs exhibits a Michaelis-Menten kinetic, yielding KMapp values for offline and on-flow of 521.2 ± 62.9 µM and 601 ± 66.5 µM, respectively. Inhibition studies conducted with a fourth generation immucillin derivative (DI4G) were employed as proof of concept to validate the use of the HsPNP-MPs assays for screening purposes. Additionally, a small library containing 11 compounds was used to assess the selectivity of the developed assays. The results showed that both presented assays can be applied to selectively recognizing and characterizing HsPNP inhibitors. Particularly, the on-flow method exhibited a high throughput and performance because of its automation and represents an easy and practical approach to reuse the HsPNP-MPs. Besides, this novel enzyme activity assay model can be further applied to other biological targets.


Assuntos
Fenômenos Magnéticos , Purina-Núcleosídeo Fosforilase , Inibidores Enzimáticos/farmacologia , Humanos , Cinética , Nucleosídeos de Purina , Purina-Núcleosídeo Fosforilase/metabolismo
5.
Bioresour Technol ; 345: 126497, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34883192

RESUMO

For the first time, this work reported the one-step purification and targeted immobilization process of a ß-galactosidase (Gal) with the Cellulose Binding Domain (CBD) tag, by binding it to different magnetic cellulose supports. The process efficiency after ß-galactosidase-CBD immobilization on magnetic cellulose-based supports showed values of approximately 90% for all evaluated enzymatic loads. Compared with free Gal, derivatives showed affinity values between ß-galactosidase and the substrate 1.2 × higher in the lactose hydrolysis of milk. ß-Galactosidase-CBD's oriented immobilization process on supports increased the thermal stability of the immobilized enzyme by up to 7 × . After 15 cycles of reuse, both enzyme preparations showed a relative hydrolysis percentage of 50% of lactose in milk. The oriented immobilization process developed for purifying recombinant proteins containing the CBD tag enabled the execution of both steps simultaneously and quickly and the obtention of ß-galactosidases with promising catalytic characteristics for application in the food and pharmaceutical industries.


Assuntos
Celulose , Lactose , Estabilidade Enzimática , Enzimas Imobilizadas/metabolismo , Hidrólise , Fenômenos Magnéticos , beta-Galactosidase/metabolismo
6.
J Pharm Biomed Anal ; 204: 114286, 2021 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-34358814

RESUMO

Enzyme inhibitors represent a substantial fraction of all small molecules currently in clinical use. Therefore, the early stage of drug-discovery process and development efforts are focused on the identification of new enzyme inhibitors through screening assays. The use of immobilized enzymes on solid supports to probe ligand-enzyme interactions have been employed with success not only to identify and characterize but also to isolate new ligands from complex mixtures. Between the available solid supports, magnetic particles have emerged as a promising support for enzyme immobilization due to the high superficial area, easy separation from the reaction medium and versatility. Particularly, the ligand fishing assay has been employed as a very useful tool to rapidly isolate bioactive compounds from complex mixtures, and hence the use of magnetic particles for enzyme immobilization has been widespread. Thus, this review provides a critical overview of the screening assays using immobilized enzymes on magnetic particles between 2006 and 2021.


Assuntos
Enzimas Imobilizadas , Magnetismo , Descoberta de Drogas , Ligantes , Fenômenos Magnéticos
7.
Rev. cuba. invest. bioméd ; 40(2): e570, 2021. graf
Artigo em Espanhol | LILACS, CUMED | ID: biblio-1347461

RESUMO

Introducción: El panorama demográfico en el mundo está cambiando. La población mayor de 60 años es el segmento que está creciendo más rápidamente y en el que las enfermedades del tejido óseo se presentan con más frecuencia, lo que aumenta la demanda de materiales y tecnologías apropiadas para restaurar estos tejidos. Objetivo: Analizar la información que se ha generado sobre el desarrollo de biomateriales compuestos para la reparación ósea, con énfasis en la identificación de las tecnologías emergentes basadas en el uso del campo electromagnético, sus aplicaciones y potencialidades. Métodos: Se consultaron trabajos científicos publicados en libros, revistas, patentes y tesis. El 80 por ciento de la documentación seleccionada pertenece al periodo 2010-2019. Análisis e integración de la información: Los métodos identificados fueron clasificados en cinco grupos: electrodeposición química, ya sea por electrólisis, electroforesis o síntesis electroforética in situ; electroporación; electrohilado; control magnético distal y bioestimulación electromagnética de células y tejidos, directamente o por la introducción de dispositivos que convierten la energía electromagnética en energía mecánica. Conclusiones: Estos métodos permiten la conformación de matrices celulares y acelulares compuestas y, además, dispositivos bioestimuladores con control de los parámetros de construcción y acción, de tal manera, que se logran procesos con mayor grado de reproducibilidad y a la medida de los requerimientos específicos para cada paciente(AU)


Introduction: The global demographic panorama is changing. The population aged over 60 years is the fastest growing segment, as well as the one where bone tissue diseases are most common, increasing the demand of appropriate materials and technologies to restore those tissues. Objective: To analyze the information so far generated about the development of composite biomaterials for bone repair, with an emphasis on the identification of emerging technologies based on the use of the electromagnetic field, its applications and potential. Methods: An analysis was performed of scientific papers published in books, journals, patents and theses. Of the documentation selected, 80 percent was from the period 2010-2019. Data analysis and integration: The methods identified were classified into five groups: chemical electrodeposition, be it by in situ electrophoretic synthesis, electrolysis or electrophoresis; electroporation; electrospinning; distal magnetic control and electromagnetic biostimulation of cells and tissues, either directly or incorporating devices which convert electromagnetic energy into mechanical energy. Conclusions: These methods permit the conformation of composite cellular and acellular matrices as well as biostimulator devices controlling construction and action parameters in such a way that the processes obtained display greater reproducibility and are more in keeping with the specific requirements of each patient(AU)


Assuntos
Humanos , Materiais Biocompatíveis/análise , Estimulação Elétrica/métodos , Campos Eletromagnéticos
8.
Materials (Basel) ; 13(5)2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32131394

RESUMO

The presence of synthetic dyes in water causes serious environmental issues owing to the low water quality, toxicity to environment and human carcinogenic effects. Adsorption has emerged as simple and environmental benign processes for wastewater treatment. This work reports the use of porous Fe-based composites as adsorbents for Acid Red 66 dye removal in an aqueous solution. The porous FeC and Fe/FeC solids were prepared by hydrothermal methods using iron sulfates and sucrose as precursors. The physicochemical properties of the solids were evaluated through X-ray diffraction (XRD), Scanning electron microscopy coupled with Energy dispersive spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared s (FTIR), Raman and Mössbauer spectroscopies, nitrogen adsorption-desorption isotherms, Electron Paramagnetic Resonance (EPR) and magnetic saturation techniques. Results indicated that the Fe species holds magnetic properties and formed well dispersed Fe3O4 nanoparticles on a carbon layer in FeC nanocomposite. Adding iron to the previous solid resulted in the formation of γ-Fe2O3 coating on the FeC type structure as in Fe/FeC composite. The highest dye adsorption capacity was 15.5 mg·g-1 for FeC nanocomposite at 25 °C with the isotherms fitting well with the Langmuir model. The removal efficiency of 98.4% was obtained with a pristine Fe sample under similar experimental conditions.

9.
Environ Toxicol Pharmacol ; 74: 103298, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31810047

RESUMO

Magnetic silver nanoparticles (MNPAg) are interesting nanotechnology materials with borderless environmental science, that can be used to disinfect water contaminated with pathogenic bacteria. The use of MNPAg leads to increased risk of nanomaterial contamination in the environment, especially natural water sources, with harmful effects on the ecosystem. This study investigating survival and enzyme activity of magnetic O-carboxymethylchitosan loaded silver nanoparticle on Artemia salina. The results showed that mortality increased with increasing concentrations of MNPAg. O-Carboxymethylchitosan loaded silver nanoparticles were found to be more toxic, with a LC50 of 902.1 mg/L for γ-Fe2O3/Ag without reducing agent. Accumulation of silver on Artemia salina depends on the type of nanoparticle. Accumulation of nanoparticle containing polymers (carboxymethylchitosan/γ-Fe2O3/Ag without reducing agent, carboxymethylchitosan/γ-Fe2O3/Ag reduced with sucrose and carboxymethylchitosan/γ-Fe2O3/Ag reduced with NaBH4) were found to be higher than γ-Fe2O3/Ag reduced with NaBH4, γ-Fe2O3/Ag reduced with sucrose and γ-Fe2O3/Ag without reducing agent under the same experimental conditions. The antioxidant enzyme (CAT, SOD and GST) activities increased slightly following exposure, indicating that the toxic effects are related to oxidative stress. The combined results so far indicate that MNPA does not have the potential to affect aquatic organisms when released into the ecosystem.


Assuntos
Quitosana/análogos & derivados , Nanopartículas Metálicas/toxicidade , Prata/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Artemia/fisiologia , Quitosana/toxicidade
10.
Biotechnol Rep (Amst) ; 24: e00373, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31516853

RESUMO

Magnetic-chitosan particles were prepared following three different protocols enabling the preparation of particles with different sizes - nano (Nano-CMag, Micro (Micro-CMag) and Macro (Macro-CMag) - and used for pectinase immobilization and clarification of grape, apple and orange juices. The particle size had a great effect in the kinetic parameters, Nano-CMag biocatalyst presented the highest Vmax value (78.95 mg. min-1), followed by Micro-CMag and Macro-CMag, with Vmax of 57.20 mg.min-1 and 46.03 mg.min-1, respectively. However, the highest thermal stability was achieved using Macro-CMag, that was 8 and 3-times more stable than Nano-CMag and Micro-CMag biocatalysts, respectively. Pectinase immobilized on Macro-CMag kept 85% of its initial activity after 25 batch cycles in orange juice clarification. These results suggested that the chitosan magnetic biocatalysts presented great potential application as clarifying catalysts for the fruit juice industry and the great importance of the chitosan particles preparation on the final biocatalyst properties.

11.
Talanta ; 183: 172-176, 2018 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-29567160

RESUMO

In this work an electrochemical procedure for Cr(VI) flow based determination in tap water is presented. An AdCSV method was developed using a screen printed electrode modified with magnetic poly(1-allyl-3-methylimidazolium) chloride and the procedure does not require the addition of complexing agents in the solution unlike the methodologies reported so far for Cr(VI) determination. The flow based system is described and the control variables were studied in detail and optimized using a Taguchi parameters design. Under optimal conditions, the electrochemical sensor offered an excellent response to Cr(VI) and the limit of detection estimated from 3σ was 0.5 µg L-1 (n = 3) allowing the analysis of tap water samples. The effect of interfering ions was also investigated below the maximum permissible limits for tap water according to Mexican standards. The presence of the magnetic particles on the sorbent allowed its easy modification on the electrode surface between each determination when removing the magnetic field placed in the wall-jet cell. Finally, the precision of the method was tested with tap water samples using standard addition method for Cr(VI) quantification and the accuracy was evaluated comparing the results with the dyphenylcarbazide method and by analyzing a certified water sample. The method shows good repeatability and reproducibility (%RSD less than 5%) making it feasible for Cr(VI) flow based determination and no significant difference is observed in the results obtained by both methods.

13.
Materials (Basel) ; 10(5)2017 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-28772865

RESUMO

An evaluation of the chromium(VI) adsorption capacity of four magnetite sorbents coated with a polymer phase containing polymethacrylic acid or polyallyl-3-methylimidazolium is presented. Factors that influence the chromium(VI) removal such as solution pH and contact time were investigated in batch experiments and in stirred tank reactor mode. Affinity and rate constants increased with the molar ratio of the imidazolium. The highest adsorption was obtained at pH 2.0 due to the contribution of electrostatic interactions.

14.
Int J Pharm ; 493(1-2): 313-27, 2015 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-26232700

RESUMO

Recently, significant research efforts have been devoted to the finding of efficient approaches in order to reduce the side effects of traditional cancer therapy and diagnosis. In this context, magnetic nanoparticles have attracted much attention because of their unique physical properties, magnetic susceptibility, biocompatibility, stability and many more relevant characteristics. Particularly, magnetic nanoparticles for in vivo biomedical applications need to fulfill special criteria with respect to size, size distribution, surface charge, biodegradability or bio-eliminability and optionally bear well selected ligands for specific targeting. In this context, many routes have been developed to synthesize these materials, and tune their functionalities through intriguing techniques including functionalization, coating and encapsulation strategies. In this review article, the use of magnetic nanoparticles for cancer therapy and diagnosis is evaluated addressing potential applications in MRI, drug delivery, hyperthermia, theranostics and several other domains. In view of potential biomedical applications of magnetic nanoparticles, the review focuses on the most recent progress made with respect to synthetic routes to produce magnetic nanoparticles and their salient accomplishments for in vivo cancer diagnosis and therapy.


Assuntos
Nanopartículas/uso terapêutico , Neoplasias/diagnóstico , Neoplasias/terapia , Animais , Humanos , Fenômenos Magnéticos , Nanopartículas/química
15.
R. Inst. Adolfo Lutz ; 73(3): 287-292, 2014. tab, graf
Artigo em Português | VETINDEX | ID: vti-17079

RESUMO

This study reports the results of microscopic analysis for detecting and identifying magnetic particles in granulated sugar produced and commercialized in the regions of Ribeirão Preto, Bauru and Campinas of São Paulo State. The National Health Surveillance Agency through the REALI (Alert and Communication of Risks in Foods Network) nº17/2011 requested for the Sanitary Surveillance Groups action for supervising and collecting samples from sugar factories after consumers complaints. Sixty samples collected between 2011 e 2012 were analyzed at the Centers for Regional Laboratories of these three regions. The methodologies of scattering sample (Zamboni, 1986) and of dissolution of sample (AOAC, 2005) were employed for detecting the magnetic particles, and the results were evaluated according to legislations in force. Of 41 samples collected in 2011, 41.5 % contained magnetic particles up to 4.5 mm of length, and of 19 samples analyzed in 2012, 21.1 % contained particles up to 2.0 mm, which indicate fails in good practical of manufacture and potentials health risks, which require corrective measures in production. It is crucial to institute a legislation to set benchmarks and limits for the presence of these particles, and the greater integration among industry, scientific community and regulatory agencies to ensure safe food production.(AU)


Este trabalho apresenta os resultados do monitoramento realizado por meio das análises microscópicas para pesquisa e identificação de partículas magnéticas presentes em açúcar cristal produzido e comercializado nas regiões de Ribeirão Preto, Bauru e Campinas/SP. A Agência Nacional de Vigilância Sanitária por meio da REALI (Rede de Alerta e Comunicação de Riscos em Alimentos) nº 17/2011 solicitou aos Grupos de Vigilância Sanitária a fiscalização e coleta de amostras nas usinas de açúcar após denúncias de consumidores. Sessenta amostras coletadas entre 2011 e 2012 foram analisadas nos Centros de Laboratórios Regionais dessas três regiões, utilizando-se as metodologias de espalhamento da amostra para análise visual (Zamboni, 1986) e de dissolução da amostra (Tec. Nº 945.80–AOAC, 2005). Os resultados foram avaliados segundo as legislações em vigor. Das 41 amostras de 2011, 41,5 % continham partículas magnéticas de até 4,5 mm de comprimento e das 19 amostras analisadas em 2012, 21,1 % continham partículas de até 2,0 mm, as quais indicam falhas nas boas práticas e riscos à saúde, exigindo-se medidas corretivas na produção. É necessária uma legislação que defina padrões de referência e limites para a presença destas partículas, além de maior entrosamento entre indústria, comunidade científica e órgãos reguladores para garantia de alimentos seguros.(AU)


Assuntos
Açúcares , Resíduos Metálicos , Separação Magnética , Microscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA