Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Heliyon ; 10(3): e25377, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322940

RESUMO

Molecular diagnostic methods to detect and quantify viral RNA in clinical samples rely on the purification of the genetic material prior to reverse transcription polymerase chain reaction (qRT-PCR). Due to the large number of samples processed in clinical laboratories, automation has become a necessity in order to increase method processivity and maximize throughput per unit of time. An attractive option for isolating viral RNA is based on the magnetic solid phase separation procedure (MSPS) using magnetic microparticles. This method offers the advantage over other alternative methods of making it possible to automate the process. In this study, we report the results of the MSPS method based on magnetic microparticles obtained by a simple synthesis process, to purify RNA from oro- and nasopharyngeal swab samples of patients suspected of COVID-19 provided by three diagnostic laboratories located in the Buenos Aires Province, Argentina. Magnetite nanoparticles of Fe3O4 (MNPs) were synthesized by the coprecipitation method and then coated with silica (SiO2) produced by hydrolysis of tetraethyl orthosilicate (TEOS). After preliminary tests on samples from the A549 human lung cell line and swabs, an extraction protocol was developed. The quantity and purity of the RNA obtained were determined by gel electrophoresis, spectrophotometry, and qRT-PCR. Tests on samples from naso- and oropharyngeal swabs were performed in order to validate the method for RNA purification in high-throughput SARS-CoV-2 diagnosis by qRT-PCR. The method was compared to the spin columns method and the automated method using commercial magnetic particles. The results show that the method developed is efficient for RNA extraction from nasal and oropharyngeal swab samples, and also comparable to other extraction methods in terms of sensitivity for SARS-CoV-2 detection. Of note, this procedure and reagents developed locally were intended to overcome the shortage of imported diagnostic supplies as the sudden spread of COVID-19 required unexpected quantities of nucleic acid isolation and diagnostic kits worldwide.

2.
Front Bioeng Biotechnol ; 11: 1202126, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37485316

RESUMO

The outbreak of COVID-19, a disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, is regarded as the most severe of the documented coronavirus pandemics. The measurement and monitoring of SARS-CoV-2 antibody levels by serological tests are relevant for a better epidemiological and clinical understanding of COVID-19. The aim of this work was to design a method called the SARS-CoV-2 antibody detection method (SARS-CoV-2 AbDM) for fluorescence immunodetection of anti-SARS-CoV-2 IgG and IgM on both plate and microfluidic chip. For this purpose, a system with magnetic beads that immobilize the antigen (S protein and RBD) on its surface was used to determine the presence and quantity of antibodies in a sample in a single reaction. The SARS-CoV-2 AbDM led to several advantages in the performance of the tests, such as reduced cost, possibility of performing isolated or multiple samples, potential of multiplex detection, and capacity to detect whole blood samples without losing resolution. In addition, due to the microfluidic chip in conjunction with the motorized actuated platform, the time, sample quantity, and operator intervention during the process were reduced. All these advantages suggest that the SARS-CoV-2 AbDM has the potential to be developed as a PoC that can be used as a tool for seroprevalence monitoring, allowing a better understanding of the epidemiological and clinical characteristics of COVID-19 and contributing to more effective and ethical decision-making in strategies to fight against the COVID-19 pandemic.

3.
Talanta ; 256: 124277, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36738622

RESUMO

Zika virus (ZIKV) is a flavivirus transmitted by infected Aedes genus mosquitoes. An infected person may be asymptomatic or present symptoms such as fever, arthralgia, and in pregnancy it may lead to neurological disorders in the fetus, such as microcephaly. Based on the high dissemination potential of ZIVK and its similar antigen composition to other arboviruses, new approaches for selective virus detection are urgently needed. This work reports the development of an electrochemical immunoassay for detection of anti-ZIKV antibodies, using magnetic beads functionalized with recombinant protein derived from the non-structural protein 1 (ΔNS1-ZIKV) and anti-IgG antibodies labeled with horseradish peroxidase (HRP) enzyme. The magneto-immunoassay uses disposable microfluidic devices for detection of anti-ZIKV in serum samples. A linear response was obtained for a wide concentration range from 0.01 to 9.80 × 105 pg mL-1 (r2 = 0.982), with a limit of detection of 0.48 pg mL-1. The proposed immunoassay proved to be highly efficient for the detection of anti-ZIKV antibodies in serum, offering promising perspectives for the development of fast, simple, and affordable point-of-care diagnosis devices for ZIKV.


Assuntos
Culicidae , Infecção por Zika virus , Zika virus , Animais , Humanos , Infecção por Zika virus/diagnóstico , Imunoensaio , Anticorpos Antivirais
4.
Hum Reprod ; 38(2): 204-215, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36539256

RESUMO

STUDY QUESTION: Is it possible to remove sperm with damaged DNA from a semen sample? SUMMARY ANSWER: By using immunomagnetic cell sorting that targets the sperm head-bound epididymal sperm-binding protein 1 (ELSPBP1), it was possible to produce an ELSPBP1(-) sperm fraction characterized by consistently lower levels of sperm DNA fragmentation (SDF). WHAT IS KNOWN ALREADY: In bovines, ELSPBP1 is bound to dead spermatozoa. Human ejaculates with high SDF have increased detected levels of sperm ELSPBP1 when compared to ejaculates with low native SDF. STUDY DESIGN, SIZE, DURATION: We recruited 267 patients who were referred to the clinic for conjugal infertility. After applying exclusion criteria, such as fever within 90 days of the study, history of systemic diseases, alterations or surgical interventions to the genital tract and use of cigarette or drugs, a total of 133 patients were included. A total of 52 samples were used for the evaluation of sperm ELSPBP1 levels (Sub-study 1), 41 samples for determination of ELSPBP1 location in human sperm (Sub-study 2), and 40 samples for immunomagnetic cell sorting targeting ELSPBP1, to produce ELSPBP1(-) (without ELSPBP1) and ELSPBP1(+) (with ELSPBP1) fractions (Sub-study 3). Samples were collected between July 2016 and September 2019. PARTICIPANTS/MATERIALS, SETTING, METHODS: In Sub-study 1, sperm ELSPBP1 levels were assessed by western blotting. For Sub-study 2, ELSPBP1 was localized in sperm by immunocytochemistry. Finally, for Sub-study 3, sperm were selected based on incubation of semen samples with antibody-coated magnetic microspheres targeting ELSPBP1. Two fractions were produced (with or without ELSPBP1), and these sub-populations were submitted to an alkaline Comet assay for determination of SDF. MAIN RESULTS AND THE ROLE OF CHANCE: Men with high SDF presented higher sperm ELSPBP1 levels when compared to the control group (low SDF), while no difference between groups was observed in seminal plasma. ELSPBP1 was located in the head region of human sperm. The ELSPBP1(+) fractions presented high and variable levels of SDF, while their paired ELSPBP(-) fractions presented consistently low SDF. LIMITATIONS, REASONS FOR CAUTION: This work did not validate the levels of ELSPBP1 in other functional alterations of sperm, such as acrosome integrity or mitochondrial activity. Moreover, this is still a pre-clinical study, intended to demonstrate proof-of-concept that ELSPBP1 selects sperm with low DNA fragmentation; further investigation is warranted to demonstrate safety for use in ART. Sperm fractions were not assessed for sperm vitality. A clinical trial is still necessary for these findings to be extrapolated to outcomes in ART. WIDER IMPLICATIONS OF THE FINDINGS: Our findings demonstrate that ELSPBP1 is associated with sperm with higher levels of DNA fragmentation. The finding that the sperm membrane can reflect alterations in DNA integrity could give rise to a novel molecular method for sperm preparation prior to use of assisted reproductive procedures. Moreover, the detection of sperm-bound ELSPBP1 could serve as an indirect method for the determination of DNA fragmentation. STUDY FUNDING/COMPETING INTEREST(S): L.B.B. was a recipient of a Ph.D. scholarship from the Sao Paulo Research Foundation-FAPESP (process number 2016/05487-3). R.P.B. is a recipient of a Scientific Productivity scholarship from the Brazilian National Council for Scientific and Technological Development-CNPq (process number 306705/2017-6). The authors have no conflict of interest to disclose. TRIAL REGISTRATION NUMBER: N/A.


Assuntos
Infertilidade Masculina , Humanos , Masculino , Animais , Bovinos , Infertilidade Masculina/genética , Triticum/genética , Brasil , Sementes , Espermatozoides/metabolismo , Análise do Sêmen/métodos , DNA
5.
Talanta, v. 256, 124277, jan. 2023
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-4792

RESUMO

Zika virus (ZIKV) is a flavivirus transmitted by infected Aedes genus mosquitoes. An infected person may be asymptomatic or present symptoms such as fever, arthralgia, and in pregnancy it may lead to neurological disorders in the fetus, such as microcephaly. Based on the high dissemination potential of ZIVK and its similar antigen composition to other arboviruses, new approaches for selective virus detection are urgently needed. This work reports the development of an electrochemical immunoassay for detection of anti-ZIKV antibodies, using magnetic beads functionalized with recombinant protein derived from the non-structural protein 1 (ΔNS1-ZIKV) and anti-IgG antibodies labeled with horseradish peroxidase (HRP) enzyme. The magneto-immunoassay uses disposable microfluidic devices for detection of anti-ZIKV in serum samples. A linear response was obtained for a wide concentration range from 0.01 to 9.80 × 105 pg mL−1 (r2 = 0.982), with a limit of detection of 0.48 pg mL−1. The proposed immunoassay proved to be highly efficient for the detection of anti-ZIKV antibodies in serum, offering promising perspectives for the development of fast, simple, and affordable point-of-care diagnosis devices for ZIKV.

6.
J Pharm Biomed Anal ; 219: 114901, 2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-35780529

RESUMO

Reduced nicotinamide adenine dinucleotide phosphate (NADPH) participates in several anabolic and catabolic pathways, being essential in numerous biochemical reactions involving energy release. Most of these reactions require a high amount of NADPH, which can be expensive from an industry point of view. Thus, biotechnology industries developed a great interest in NADPH production. Currently, there are different ways to obtain NADPH in situ, however, the most common is by enzymatic reactions, known as generator systems. Although this approach can be beneficial in terms of cost, the major drawback is the impossibility of reusing the enzyme. To overcome this, enzyme immobilization is a proven alternative. Herein, we report the use of glucose-6-phosphate dehydrogenase immobilized onto magnetic beads (G6PDH-Mb) through glutaraldehyde coupling to produce high amounts of NADPH. The G6PDH-Mbs were kinetically characterized showing a sigmoidal curve. Besides, the stability was evaluated, and their reuse was demonstrated for a period superior to 40 days. The G6PDH-Mb was used to in situ production of the NADPH metabolism experiments, using human liver microsome solutions and either albendazole or fiscalin B as model targets. The production of in vitro metabolites from albendazole and fiscalin B was evaluated by comparing the use of NADPH generated in situ with those obtained by commercial NADPH. Moreover, the activity of the G6PDH-Mb was monitored after using it for five consecutive albendazole metabolism reactions, with only a minor decrease in the enzyme activity (3.58 ± 1.67%) after the fifth time of use. The higher concentration obtained when using the designed G6PDH-Mb generator system demonstrated proof of the concept and its applicability.


Assuntos
Albendazol , Glucosefosfato Desidrogenase , Glucosefosfato Desidrogenase/metabolismo , Humanos , Fenômenos Magnéticos , NADP/metabolismo
7.
Anal Chim Acta ; 1205: 339718, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35414393

RESUMO

Rapid, straightforward, and massive diagnosis of coronavirus disease 2019 (COVID-19) is one of the more important measures to mitigate the current pandemics. This work reports on an immunosensor to rapidly detect the spike protein from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The immunosensing device entraps the spike protein linked to angiotensin-converting enzyme host receptor (ACE2) protein in a sandwich between carboxylated magnetic beads functionalized with an anti-spike antibody and an anti-ACE2 antibody, further labeled with streptavidin (poly)horseradish peroxidase (HRP) reporter enzyme. The particles were confined at the surface of screen-printed gold electrodes, whose signal resulting from the interaction of the enzyme with a mediator was recorded in a portable potentiostat. The immunosensor showed a sensitivity of 0.83 µA∗mL/µg and a limit of detection of 22.5 ng/mL of spike protein, with high reproducibility. As a proof-of-concept, it detected commercial spike protein-supplemented buffer solutions, pseudovirions, isolated viral particles and ten nasopharyngeal swab samples from infected patients compared to samples from three healthy individuals paving the way to detect the virus closer to the patient.


Assuntos
Técnicas Biossensoriais , COVID-19 , Enzima de Conversão de Angiotensina 2 , Técnicas Biossensoriais/métodos , COVID-19/diagnóstico , Humanos , Imunoensaio , Ligação Proteica , Reprodutibilidade dos Testes , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus
8.
Braz J Microbiol ; 53(3): 1263-1269, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35426068

RESUMO

Immunological assays to detect SARS-CoV-2 Spike Receptor Binding Domain (RBD) antigen seroconversion in humans are important tools to monitor the levels of protecting antibodies in the population in response to infection and/or immunization. Here we describe a simple, low cost, and high throughput Ni2+ magnetic bead immunoassay to detect human IgG reactive to Spike S1 RBD Receptor Binding Domain produced in Escherichia coli. A 6xHis-tagged Spike S1 RBD was expressed in E. coli and purified by affinity chromatography. The protein was mobilized on the surface of Ni2+ magnetic beads and used to investigate the presence of reactive IgG in the serum obtained from pre-pandemic and COVID-19 confirmed cases. The method was validated with a cohort of 290 samples and an area under the receiver operating characteristic curve of 0.94 was obtained. The method was operated with > 82% sensitivity at 98% specificity and was also able to track human IgG raised in response to vaccination with Comirnaty at > 85% sensitivity. The IgG signal obtained with the described method was well-correlated with the signal obtained when pre fusion Spike produced in HEK cell lines was used as antigen. This novel low-cost and high throughput immunoassay may act as an important tool to investigate protecting IgG antibodies against SARS-CoV-2 in the human population.


Assuntos
COVID-19 , SARS-CoV-2 , Anticorpos Antivirais , Escherichia coli/genética , Humanos , Imunoensaio/métodos , Imunoglobulina G , Fenômenos Magnéticos , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
9.
Anal Biochem ; 631: 114360, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34481802

RESUMO

To monitor the levels of protecting antibodies raised in the population in response to infection and/or to immunization with SARS-CoV-2, we need a technique that allows high throughput and low-cost quantitative analysis of human IgG antibodies reactive against viral antigens. Here we describe an ultra-fast, high throughput and inexpensive assay to detect SARS-CoV-2 seroconversion in humans. The assay is based on Ni2+ magnetic particles coated with His tagged SARS-CoV-2 antigens. A simple and inexpensive 96 well plate magnetic extraction/homogenization process is described which allows the simultaneous analysis of 96 samples and delivers results in 7 min with high accuracy.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19/métodos , COVID-19/diagnóstico , Imunoglobulina G/sangue , SARS-CoV-2/isolamento & purificação , Anticorpos Antivirais/imunologia , Antígenos Virais/sangue , Antígenos Virais/imunologia , COVID-19/sangue , COVID-19/imunologia , Teste Sorológico para COVID-19/economia , Ensaio de Imunoadsorção Enzimática/economia , Ensaio de Imunoadsorção Enzimática/métodos , Humanos , Imunoglobulina G/imunologia , Imãs/química , Níquel/química , SARS-CoV-2/imunologia , Sensibilidade e Especificidade , Soroconversão , Fatores de Tempo
10.
Biosensors (Basel) ; 11(6)2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-34203685

RESUMO

In spite of a current increasing trend in the development of miniaturized, standalone point-of-care (PoC) biosensing platforms in the literature, the actual implementation of such systems in the field is far from being a reality although deeply needed. In the particular case of the population screenings for local or regional diseases related to specific pathogens, the diagnosis of the presence of specific antibodies could drastically modify therapies and even the organization of public policies. The aim of this work was to develop a fast, cost-effective detection method based on the manipulation of functionalized magnetic beads for an efficient diagnosis of hypersensitivity pneumonitis (HP), looking for the presence of anti-pigeon antigen antibodies (APAA) in a patient's serum. We presented a Diagnostic Biosensor Method (DBM) in detail, with validation by comparison with a traditional high-throughput platform (ELISA assay). We also demonstrated that it was compatible with a microfluidic chip that could be eventually incorporated into a PoC for easy and broad deployment using portable optical detectors. After standardization of the different reaction steps, we constructed and validated a plastic chip that could easily be scaled to high-volume manufacturing in the future. The solution proved comparable to conventional ELISA assays traditionally performed by the clinicians in their laboratory and should be compatible with other antibody detection directly from patient samples.


Assuntos
Alveolite Alérgica Extrínseca , Técnicas Biossensoriais , Alveolite Alérgica Extrínseca/diagnóstico , Anticorpos , Ensaio de Imunoadsorção Enzimática , Desenho de Equipamento , Humanos , Separação Imunomagnética , Dispositivos Lab-On-A-Chip , Microfluídica , Sistemas Automatizados de Assistência Junto ao Leito
11.
ACS Sens ; 6(3): 703-708, 2021 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-33496577

RESUMO

Immunological methods to detect SARS-CoV-2 seroconversion in humans are important to track COVID-19 cases and the humoral response to SARS-CoV-2 infections and immunization to future vaccines. The aim of this work was to develop a simple chromogenic magnetic bead-based immunoassay which allows rapid, inexpensive, and quantitative detection of human antibodies against SARS-CoV-2 in serum, plasma, or blood. Recombinant 6xHis-tagged SARS-CoV-2 Nucleocapsid protein was mobilized on the surface of Ni2+ magnetic beads and challenged with serum or blood samples obtained from controls or COVID-19 cases. The beads were washed, incubated with anti-human IgG-HPR conjugate, and immersed into a solution containing a chromogenic HPR substrate. Bead transfer and homogenization between solutions was aided by a simple low-cost device. The method was validated by two independent laboratories, and the performance to detect SARS-CoV-2 seroconversion in humans was in the same range as obtained using the gold standard immunoassays ELISA and Luminex, though requiring only a fraction of consumables, instrumentation, time to deliver results, and volume of sample. Furthermore, the results obtained with the method described can be visually interpreted without compromising accuracy as demonstrated by validation at a point-of-care unit. The magnetic bead immunoassay throughput can be customized on demand and is readily adapted to be used with any other 6xHis tagged protein or peptide as antigen to track other diseases.


Assuntos
Anticorpos Antivirais/sangue , Teste Sorológico para COVID-19 , COVID-19/diagnóstico , Ensaio de Imunoadsorção Enzimática/métodos , SARS-CoV-2/imunologia , COVID-19/sangue , COVID-19/imunologia , Humanos , Imunoglobulina G/imunologia , Fenômenos Magnéticos
12.
Carbohydr Polym ; 247: 116671, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-32829799

RESUMO

Heparin was immobilized on magnetic chitosan particles to be used as a tool for human plasma protein identification. Chitosan was magnetized by co-precipitation with Fe2+/Fe3+ (MAG-CH). Heparin was functionalized with carbodiimide and N-hydroxysuccinimide and covalently linked to MAG-CH (MAG-CH-hep). X-ray diffraction confirmed the presence of chitosan and Fe3O4 in MAG-CH. This particle exhibited superparamagnetism and size between 100-300 µm. Human plasma diluted with 10 mM phosphate buffer (pH 5.5) or 50 mM Tris-HCl buffer (pH 8.5) was incubated with MAG-CH-hep, and the proteins fixed were eluted with the same buffers containing increasing concentrations of NaCl. The proteins obtained were investigated by SDS-PAGE, LC/MS, and biological activity tests (PT, aPTT, and enzymatic chromogenic assay). Inhibitors of the serpin family, prothrombin, and human albumin were identified in this study. Therefore, MAG-CH-hep can be used to purify these proteins and presents the following advantages: low-cost synthesis, magnetic separation, ion-exchange purification, and reusability.


Assuntos
Proteínas Sanguíneas/análise , Quitosana/química , Heparina/química , Imãs , Adsorção , Humanos
13.
Methods Mol Biol ; 2116: 109-116, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32221917

RESUMO

Immunoprecipitation is a helpful tool to assess interactions between proteins and proteins or nucleic acids (DNA or RNA). Its principle consists in capturing and enriching one or multiple target proteins from a complex sample with a specific antibody conjugated to a solid matrix and isolating the RNA and/or protein molecules associated to those target(s) group of proteins that can be further identified by advanced techniques such as RNA-seq and/or mass spectrometry. Since this technique allows for identifying, mapping, and checking new protein-protein and protein-RNA interactions, its use is very convenient in situations where many proteins remain with their functions uncharacterized, as is the case of the protozoan Trypanosoma cruzi. Here we describe a protocol that is based on the cryogrinding method for cell lysis and the use of antibodies conjugated to magnetic beads to capture and purify protein complexes in a robust and efficient way.


Assuntos
Separação Imunomagnética/métodos , Imunoprecipitação/métodos , Substâncias Macromoleculares/isolamento & purificação , Trypanosoma cruzi/fisiologia , Substâncias Macromoleculares/metabolismo , Espectrometria de Massas/métodos , Parasitologia/métodos , Mapeamento de Interação de Proteínas , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/metabolismo , RNA de Protozoário/isolamento & purificação , RNA de Protozoário/metabolismo
14.
Talanta ; 205: 120110, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31450419

RESUMO

Tristeza is a disease that affects citrus crops in general, caused by the Citrus tristeza virus (CTV). It is considered an economically important virus diseases in citrus, which is present in the main citrus producing regions all around the world. Early detection of CTV is crucial to avoid any epidemics and substantial economic losses for the citrus growers. Consequently, the development of rapid, accurate, and sensitive methods capable of detecting the virus in the early stages of the disease is highly desired. Based on that, a low-cost and rapid magneto-immunoassay methodology to detect the capsid protein from CTV (CP-CTV) was proposed. For this, magnetic beads were decorated with antibodies anti-CP-CTV and horseradish peroxidase enzyme (HRP) and applied for the capture and separation of CP-CTV from the sample solutions. The magnetically captured biomarker was detected using a simple disposable microfluidic electrochemical device (DµFED) constructed by rapid prototyping technique and composed by an array of immunosensors. In DµFED, the electrodes were modified with monoclonal antibody anti-CP-CTV and the detection was carried out using amperometry, based on the hydroquinone/H2O2 catalytic redox reaction due to the presence of HRP label in an immune-sandwich structure. The proposed immunoassay presented excellent linearity with a wide linear range of concentration of 1.95-10.0 × 103 fg mL-1 and ultralow detection limit of 0.3 fg mL-1. The disposable device was successfully applied for the detection of Citrus tristeza virus in healthy and infected plant samples, where it showed good agreements with the comparative method of enzyme-linked immunosorbent assay (ELISA). The developed immunoassay methodology showed a sensitive and selective way in the detection of CTV. Hence, it can be considered as a promising analytical alternative for rapid and low-cost diagnosis of Tristeza disease in citrus.


Assuntos
Closterovirus/isolamento & purificação , Dispositivos Lab-On-A-Chip , Animais , Anticorpos Imobilizados/imunologia , Anticorpos Monoclonais Murinos/imunologia , Proteínas do Capsídeo/análise , Proteínas do Capsídeo/imunologia , Citrus/virologia , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Imunoensaio/métodos , Separação Imunomagnética/métodos , Limite de Detecção , Nanopartículas Metálicas/química , Camundongos , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Doenças das Plantas/virologia , Folhas de Planta/virologia , Reprodutibilidade dos Testes
15.
Braz. J. Microbiol. ; 49(1): 128-137, jan.-mar. 2018. ilus, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-18544

RESUMO

We developed a loop-mediated isothermal amplification (LAMP) assay for the detection of Y. pestis by targeting the 3a sequence on chromosome. All 11 species of the genus Yersinia were used to evaluate the specificity of LAMP and PCR, demonstrating that the primers had a high level of specificity. The sensitivity of LAMP or PCR was 2.3 or 23 CFU for pure culture, whereas 2.3 × 104 or 2.3 × 106 CFU for simulated spleen and lung samples. For simulated liver samples, the sensitivity of LAMP was 2.3 × 106 CFU, but PCR was negative at the level of 2.3 × 107 CFU. After simulated spleen and lung samples were treated with magnetic beads, the sensitivity of LAMP or PCR was 2.3 × 103 or 2.3 × 106 CFU, whereas 2.3 × 105 or 2.3 × 107 CFU for magnetic bead-treated liver samples. These results indicated that some components in the tissues could inhibit LAMP and PCR, and liver tissue samples had a stronger inhibition to LAMP and PCR than spleen and lung tissue samples. LAMP has a higher sensitivity than PCR, and magnetic bead capture of DNAs could remarkably increase the sensitivity of LAMP. LAMP is a simple, rapid and sensitive assay suitable for application in the field or poverty areas.(AU)


Assuntos
Yersinia pestis/isolamento & purificação , Peste/diagnóstico , Reação em Cadeia da Polimerase , Técnicas de Amplificação de Ácido Nucleico
16.
Braz. j. microbiol ; Braz. j. microbiol;49(1): 128-137, Jan.-Mar. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-889212

RESUMO

ABSTRACT We developed a loop-mediated isothermal amplification (LAMP) assay for the detection of Y. pestis by targeting the 3a sequence on chromosome. All 11 species of the genus Yersinia were used to evaluate the specificity of LAMP and PCR, demonstrating that the primers had a high level of specificity. The sensitivity of LAMP or PCR was 2.3 or 23 CFU for pure culture, whereas 2.3 × 104 or 2.3 × 106 CFU for simulated spleen and lung samples. For simulated liver samples, the sensitivity of LAMP was 2.3 × 106 CFU, but PCR was negative at the level of 2.3 × 107 CFU. After simulated spleen and lung samples were treated with magnetic beads, the sensitivity of LAMP or PCR was 2.3 × 103 or 2.3 × 106 CFU, whereas 2.3 × 105 or 2.3 × 107 CFU for magnetic bead-treated liver samples. These results indicated that some components in the tissues could inhibit LAMP and PCR, and liver tissue samples had a stronger inhibition to LAMP and PCR than spleen and lung tissue samples. LAMP has a higher sensitivity than PCR, and magnetic bead capture of DNAs could remarkably increase the sensitivity of LAMP. LAMP is a simple, rapid and sensitive assay suitable for application in the field or poverty areas.


Assuntos
Humanos , Peste/microbiologia , DNA Bacteriano/genética , Técnicas de Amplificação de Ácido Nucleico/métodos , Magnetismo/métodos , Yersinia pestis/isolamento & purificação , Yersinia pestis/classificação , Yersinia pestis/genética , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/química , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Separação Imunomagnética , Primers do DNA/genética , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Magnetismo/instrumentação
17.
Braz J Microbiol ; 49(1): 128-137, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28887007

RESUMO

We developed a loop-mediated isothermal amplification (LAMP) assay for the detection of Y. pestis by targeting the 3a sequence on chromosome. All 11 species of the genus Yersinia were used to evaluate the specificity of LAMP and PCR, demonstrating that the primers had a high level of specificity. The sensitivity of LAMP or PCR was 2.3 or 23CFU for pure culture, whereas 2.3×104 or 2.3×106CFU for simulated spleen and lung samples. For simulated liver samples, the sensitivity of LAMP was 2.3×106CFU, but PCR was negative at the level of 2.3×107CFU. After simulated spleen and lung samples were treated with magnetic beads, the sensitivity of LAMP or PCR was 2.3×103 or 2.3×106CFU, whereas 2.3×105 or 2.3×107CFU for magnetic bead-treated liver samples. These results indicated that some components in the tissues could inhibit LAMP and PCR, and liver tissue samples had a stronger inhibition to LAMP and PCR than spleen and lung tissue samples. LAMP has a higher sensitivity than PCR, and magnetic bead capture of DNAs could remarkably increase the sensitivity of LAMP. LAMP is a simple, rapid and sensitive assay suitable for application in the field or poverty areas.


Assuntos
DNA Bacteriano/genética , Magnetismo/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Peste/microbiologia , Yersinia pestis/isolamento & purificação , Primers do DNA/genética , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , Humanos , Separação Imunomagnética , Magnetismo/instrumentação , Técnicas de Amplificação de Ácido Nucleico/instrumentação , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade , Yersinia pestis/classificação , Yersinia pestis/genética
18.
Adv Exp Med Biol ; 974: 321-326, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28353252

RESUMO

This chapter describes a protocol for measuring prolyl oligopeptidase (POP) activity using a biotinylated peptide substrate coupled to magnetic microspheres. The complex is incubated in the presence of a pituitary extract and activity can be detected by loss of the biotin label. The assay can be multiplexed for measuring multiple proprotein-cleaving enzymes simultaneously and can be used in analyses of neuropsychiatric diseases in which proteolytic cleavage of biologically active peptides is known to play a role.


Assuntos
Separação Imunomagnética/métodos , Proteínas do Tecido Nervoso/análise , Hipófise/enzimologia , Serina Endopeptidases/análise , Biotinilação , Humanos , Microesferas , Fragmentos de Peptídeos/química , Prolil Oligopeptidases , Esquizofrenia/metabolismo , Estreptavidina
19.
Biosens Bioelectron ; 80: 24-33, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26802749

RESUMO

Access to appropriate diagnostic tools is an essential component in the evaluation and improvement of global health. Additionally, timely detection of infectious agents is critical in early diagnosis and treatment of infectious diseases. Conventional pathogen detection methods such as culturing, enzyme linked immunosorbent assay (ELISA) or polymerase chain reaction (PCR) require long assay times, and complex and expensive instruments making them not adaptable to point-of-care (PoC) needs at resource-constrained places and primary care settings. Therefore, there is an unmet need to develop portable, simple, rapid, and accurate methods for PoC detection of infections. Here, we present the development and validation of a portable, robust and inexpensive electrochemical magnetic microbeads-based biosensor (EMBIA) platform for PoC serodiagnosis of infectious diseases caused by different types of microorganisms (parasitic protozoa, bacteria and viruses). We demonstrate the potential use of the EMBIA platform for in situ diagnosis of human (Chagas disease and human brucellosis) and animal (bovine brucellosis and foot-and-mouth disease) infections clearly differentiating infected from non-infected individuals or animals. For Chagas disease, a more extensive validation of the test was performed showing that the EMBIA platform displayed an excellent diagnostic performance almost indistinguishable, in terms of specificity and sensitivity, from a fluorescent immunomagnetic assay and the conventional ELISA using the same combination of antigens. This platform technology could potentially be applicable to diagnose other infectious and non-infectious diseases as well as detection and/or quantification of biomarkers at the POC and primary care settings.


Assuntos
Técnicas Biossensoriais , Doenças Transmissíveis/sangue , Ensaio de Imunoadsorção Enzimática/métodos , Testes Sorológicos/métodos , Animais , Bactérias/isolamento & purificação , Bactérias/patogenicidade , Doenças Transmissíveis/microbiologia , Doenças Transmissíveis/parasitologia , Doenças Transmissíveis/virologia , Humanos , Magnetismo , Parasitos/isolamento & purificação , Parasitos/patogenicidade , Sistemas Automatizados de Assistência Junto ao Leito , Vírus/isolamento & purificação , Vírus/patogenicidade
20.
Colloids Surf B Biointerfaces ; 138: 94-101, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26674837

RESUMO

Hybrid beads composed of magnetite nanoparticles (MNP) and alginate (Alg) were synthesized and coded as Alg-MNP. They were incubated in dopamine (DOPA) solution (5 g/L), at pH 7.4 and 8 °C, during 12 h, promoting the DOPA loaded magnetic beads, coded as Alg-MNP/DOPA. The release of DOPA was further evaluated in the absence and the presence of external magnetic field (EMF) of 0.4 T. The products Alg-MNP and Alg-MNP/DOPA were characterized by scanning electron microscopy with energy dispersive spectroscopy (SEM-EDS), Fourier transform infrared vibrational spectroscopy (FTIR), UV spectrophotometry, thermogravimetric analyses (TGA), inductively coupled plasma atomic emission spectroscopy (ICP-AES) analyses and superconducting quantum interference device (SQUID) magnetometer. The magnetic and chemical properties of Alg-MNP beads were not affected by DOPA loading. The incorporation of DOPA into the beads depended on the pH and on the negative charge density. At pH 7.4 38% of DOPA were loaded into Alg-MNP beads, whereas at pH 2 or using neat Alg beads (lower charge density than Alg-MNP) the loading efficiency decreased to one third or less. In the absence of EMF, 24% of the loaded DOPA was released from Alg-MNP at pH 7.4 over a period of 26 h. The released amount increased to 33% under the stimulus of EMF. A model was proposed to explain the loading efficiency of charged drugs, as DOPA, into hybrid beads and the role played by EMF on delivery systems, where drug and matrix are oppositely charged. The results suggest that the alginate combined with magnetite nanoparticles is a promising system for release of DOPA in the presence of EMF.


Assuntos
Alginatos/química , Dopamina/química , Óxido Ferroso-Férrico/química , Nanopartículas de Magnetita/química , Microesferas , Algoritmos , Dopamina/farmacocinética , Dopaminérgicos/química , Dopaminérgicos/farmacocinética , Liberação Controlada de Fármacos , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Concentração de Íons de Hidrogênio , Cinética , Campos Magnéticos , Nanopartículas de Magnetita/ultraestrutura , Microscopia Eletrônica de Varredura , Estrutura Molecular , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA