Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
IBRO Neurosci Rep ; 14: 264-272, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36926592

RESUMO

Melatonin is a hormone secreted by the pineal gland, it can be associated with circadian rhythms, aging and neuroprotection. Melatonin levels are decreased in sporadic Alzheimer's disease (sAD) patients, which suggests a relationship between the melatonergic system and sAD. Melatonin may reduce inflammation, oxidative stress, TAU protein hyperphosphorylation, and the formation of ß-amyloid (Aß) aggregates. Therefore, the objective of this work was to investigate the impact of treatment with 10 mg/kg of melatonin (i.p) in the animal model of sAD induced by the intracerebroventricular (ICV) infusion of 3 mg/kg of streptozotocin (STZ). ICV-STZ causes changes in the brain of rats similar to those found in patients with sAD. These changes include; progressive memory decline, the formation of neurofibrillary tangles, senile plaques, disturbances in glucose metabolism, insulin resistance and even reactive astrogliosis characterized by the upregulation of glucose levels and glial fibrillary acidic protein (GFAP). The results show that ICV-STZ caused short-term spatial memory impairment in rats after 30 days of STZ infusion without locomotor impairment which was evaluated on day 27 post-injury. Furthermore, we observed that a prolonged 30-day treatment with melatonin can improve the cognitive impairment of animals in the Y-maze test, but not in the object location test. Finally, we demonstrated that animals receiving ICV-STZ have high levels of Aß and GFAP in the hippocampus and that treatment with melatonin reduces Aß levels but does not reduce GFAP levels, concluding that melatonin may be useful to control the progression of amyloid pathology in the brain.

2.
J Mol Med (Berl) ; 99(2): 289-301, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33392634

RESUMO

Primary brain tumors remain among the deadliest of all cancers. Glioma grade IV (glioblastoma), the most common and malignant type of brain cancer, is associated with a 5-year survival rate of < 5%. Melatonin has been widely reported as an anticancer molecule, and we have recently demonstrated that the ability of gliomas to synthesize and accumulate this indolamine in the surrounding microenvironment negatively correlates with tumor malignancy. However, our understanding of the specific effects mediated through the activation of melatonin membrane receptors remains limited. Thus, here we investigated the specific roles of MT1 and MT2 in gliomas and medulloblastomas. Using the MT2 antagonist DH97, we showed that MT1 activation has a negative impact on the proliferation of human glioma and medulloblastoma cell lines, while MT2 activation has an opposite effect. Accordingly, gliomas have a decreased mRNA expression of MT1 (also known as MTNR1A) and an increased mRNA expression of MT2 (also known as MTNR1B) compared to the normal brain cortex. The MT1/MT2 expression ratio negatively correlates with the expression of cell cycle-related genes and is a positive prognostic factor in gliomas. Notably, we showed that functional selective drugs that simultaneously activate MT1 and inhibit MT2 exert robust anti-tumor effects in vitro and in vivo, downregulating the expression of cell cycle and energy metabolism genes in glioma stem-like cells. Overall, we provided the first evidence regarding the differential roles of MT1 and MT2 in brain tumor progression, highlighting their relevance as druggable targets. KEY MESSAGES: • MT1 impairs while MT2 promotes the proliferation of glioma and medulloblastoma cell lines. • Gliomas have a decreased expression of MT1 and an increased expression of MT2 compared to normal brain cortex. • Tumors with a high MT1/MT2 expression ratio have significantly better survival rates. • Functional selective drugs that simultaneously activate MT1 and inhibit MT2 downregulate the expression of cell cycle and energy metabolism genes in glioma stem-like cells and exert robust anti-tumor effects in vivo.


Assuntos
Neoplasias Encefálicas , Glioma , Receptor MT1 de Melatonina , Receptor MT2 de Melatonina , Animais , Encéfalo/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/mortalidade , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Feminino , Glioma/genética , Glioma/metabolismo , Glioma/mortalidade , Glioma/patologia , Humanos , Estimativa de Kaplan-Meier , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Receptor MT1 de Melatonina/genética , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/genética , Receptor MT2 de Melatonina/metabolismo
3.
Sleep Med ; 53: 106-114, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30508778

RESUMO

BACKGROUND: Melatonin modulates the master circadian clock through the activation of G-protein-coupled receptors MT1 and MT2. It is presumed, therefore, that genetic variations in melatonin receptors can affect both sleep and circadian phase. We investigated whether the -1193T > C (rs4753426) polymorphism in the promoter of MT2 receptor gene (MTNR1B) is associated with diurnal preference and sleep habits. This polymorphism was previously associated with sunshine duration, suggesting a role in circadian entrainment. METHODS: A total of 814 subjects who completed the Morningness-Eveningness and the Munich Chronotype questionnaires were genotyped for the selected polymorphism. Linear and multinomial regression were performed to test the interaction between gene variants and diurnal preference/sleep habits. RESULTS: The -1193C variant was associated with the extreme morningness phenotype in a codominant model (C/C vs. T/T), recessive model (C/C + C/T vs. T/T) and alleles (C vs. T). A negative correlation was found between -1193C alleles and social jetlag scores. The frequency of -1193T allele was higher in the group that stay in bed more than 8 h/night compared to the group that stay in bed less than 8 h/night on weekends. CONCLUSION: To the best of our knowledge, these data provide the first insights into the role of MTNR1B gene in the regulation of sleep, biological rhythms, and entrainment in humans.


Assuntos
Relógios Circadianos/fisiologia , Polimorfismo de Nucleotídeo Único , Receptor MT2 de Melatonina/genética , Sono/fisiologia , Adulto , Alelos , Feminino , Genótipo , Humanos , Masculino , Regiões Promotoras Genéticas/genética , Inquéritos e Questionários , Adulto Jovem
4.
Sleep Sci ; 9(1): 47-54, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27226821

RESUMO

The aim of this study was to investigate the possible anxiolytic-like effects of striatal MT2 activation, and its counteraction induced by the selective blockade of this receptor. Furthermore, we analyzed this condition under the paradigm of rapid eye movement (REM) sleep deprivation (REMSD) and the animal model of Parkinson's disease (PD) induced by rotenone. Male Wistar rats were infused with intranigral rotenone (12 µg/µL), and 7 days later were subjected to 24 h of REMSD. Afterwards the rats underwent striatal micro-infusions of selective melatonin MT2 receptor agonist, 8-M-PDOT (10 µg/µL) or selective melatonin MT2 receptor antagonist, 4-P-PDOT (5 µg/µL) or vehicle. Subsequently, the animals were tested in the open-field (OP) and elevated plus maze (EPM) tests. Results indicated that the activation of MT2 receptors produced anxiolytic-like effects. In opposite, the MT2 blockade did not show an anxiogenic-like effect. Besides, REMSD induced anxiolytic-like effects similar to 8-M-PDOT. MT2 activation generated a prevalent locomotor increase compared to MT2 blockade in the context of REMSD. Together, these results suggest a striatal MT2 modulation associated to the REMSD-induced dopaminergic supersensitivity causing a possible dopaminergic influence in the MT2 anxiolytic-like effects in the intranigral rotenone model of PD.

5.
J Antimicrob Chemother ; 69(1): 139-49, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23975742

RESUMO

OBJECTIVES: Treatment failure is multifactorial. Despite the importance of host cell drug transporters and metabolizing enzymes in the accumulation, distribution and metabolism of drugs targeting intracellular pathogens, their impact on the efficacy of antileishmanials is unknown. We examined the contribution of pharmacologically relevant determinants in human macrophages in the antimony-mediated killing of intracellular Leishmania panamensis and its relationship with the outcome of treatment with meglumine antimoniate. METHODS: Patients with cutaneous leishmaniasis who failed (n = 8) or responded (n =8) to treatment were recruited. Gene expression profiling of pharmacological determinants in primary macrophages was evaluated by quantitative RT-PCR and correlated to the drug-mediated intracellular parasite killing. Functional validation was conducted through short hairpin RNA gene knockdown. RESULTS: Survival of L. panamensis after exposure to antimonials was significantly higher in macrophages from patients who failed treatment. Sixteen macrophage drug-response genes were modulated by infection and exposure to meglumine antimoniate. Correlation analyses of gene expression and intracellular parasite survival revealed the involvement of host cell metallothionein-2A and ABCB6 in the survival of Leishmania during exposure to antimonials. ABCB6 was functionally validated as a transporter of antimonial compounds localized in both the cell and phagolysosomal membranes of macrophages, revealing a novel mechanism of host cell-mediated regulation of intracellular drug exposure and parasite survival within phagocytes. CONCLUSIONS: These results provide insight into host cell mechanisms regulating the intracellular exposure of Leishmania to antimonials and variations among individuals that impact parasite survival. Understanding of host cell determinants of intracellular pharmacokinetics/pharmacodynamics opens new avenues to improved drug efficacy for intracellular pathogens.


Assuntos
Antiprotozoários/uso terapêutico , Interações Hospedeiro-Patógeno , Leishmania/imunologia , Leishmania/fisiologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Meglumina/uso terapêutico , Compostos Organometálicos/uso terapêutico , Adulto , Antiprotozoários/farmacologia , Sobrevivência Celular , Feminino , Perfilação da Expressão Gênica , Humanos , Leishmania/efeitos dos fármacos , Masculino , Meglumina/farmacologia , Antimoniato de Meglumina , Proteínas de Membrana Transportadoras/biossíntese , Proteínas de Membrana Transportadoras/genética , Pessoa de Meia-Idade , Compostos Organometálicos/farmacologia , Adulto Jovem
6.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;43(7): 657-662, July 2010. ilus, tab, graf
Artigo em Inglês | LILACS | ID: lil-550729

RESUMO

The objective of the present study was to describe motor behavioral changes in association with histopathological and hematological findings in Wistar rats inoculated intravenously with human T-cell lymphotropic virus type 1 (HTLV-1)-infected MT2 cells. Twenty-five 4-month-old male rats were inoculated with HTLV-1-infected MT2 cells and 13 control rats were inoculated with normal human lymphocytes. The behavior of the rats was observed before and 5, 10, 15, and 20 months after inoculation during a 30-min/rat testing time for 5 consecutive days. During each of 4 periods, a subset of rats was randomly chosen to be sacrificed in order to harvest the spinal cord for histopathological analysis and to obtain blood for serological and molecular studies. Behavioral analyses of the HTLV-1-inoculated rats showed a significant decrease of climbing, walking and freezing, and an increase of scratching, sniffing, biting, licking, and resting/sleeping. Two of the 25 HTLV-1-inoculated rats (8 percent) developed spastic paraparesis as a major behavioral change. The histopathological changes were few and mild, but in some cases there was diffuse lymphocyte infiltration. The minor and major behavioral changes occurred after 10-20 months of evolution. The long-term observation of Wistar rats inoculated with HTLV-1-infected MT2 cells showed major (spastic paraparesis) and minor motor abnormalities in association with the degree of HTLV-1-induced myelopathy.


Assuntos
Animais , Humanos , Masculino , Ratos , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Paraparesia Espástica Tropical/virologia , Modelos Animais de Doenças , Ensaio de Imunoadsorção Enzimática , Vírus Linfotrópico T Tipo 1 Humano/genética , Reação em Cadeia da Polimerase , Paraparesia Espástica Tropical/sangue , Paraparesia Espástica Tropical/patologia , Fatores de Tempo , Carga Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA