Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Stem Cell Rev Rep ; 18(1): 94-125, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34545529

RESUMO

Mesenchymal stem/stromal cells (MSCs) are remarkable tools for regenerative medicine. Therapeutic approaches using these cells can promote increased activity and viability in several cell types through diverse mechanisms such as paracrine and immunomodulatory activities, contributing substantially to tissue regeneration and functional recovery. However, biological samples of human MSCs, usually obtained from adult tissues, often exhibit variable behavior during in vitro culture, especially with respect to cell population heterogeneity, replicative senescence, and consequent loss of functionality. Accordingly, it is necessary to establish standard protocols to generate high-quality, stable cell cultures, for example, by using pluripotent stem cells (PSCs) in derivation protocols of MSC-like cells since PSCs maintain their characteristics consistently during culture. However, the available protocols seem to generate distinct populations of PSC-derivedMSCs (PSC-MSCs) with peculiar attributes, which do not always resemble bona fide primary MSCs. The present review addresses the developmental basis behind some of these derivation protocols, exposing the differences among them and discussing the functional properties of PSC-MSCs, shedding light on elements that may help determine standard characterizations and criteria to evaluate and define these cells.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Mesenquimais , Células-Tronco Pluripotentes , Diferenciação Celular , Humanos , Medicina Regenerativa/métodos
2.
Virology ; 449: 190-9, 2014 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-24418552

RESUMO

The typical characteristics of mesenchymal stem cells (MSCs) can be affected by inflammatory microenvironment; however, the exact contribution of HTLV-1 to MSC dysfunction remains to be elucidated. In this study, we demonstrated that MSC cell surface molecules VCAM-1 and ICAM-1 are upregulated by contact with HTLV-1, and HLA-DR was most highly expressed in MSCs co-cultured with MT2 cells. The expression levels of VCAM-1 and HLA-DR were increased in MSCs cultured in the presence of PBMCs isolated from HTLV-1-infected symptomatic individuals compared with those cultured with cells from asymptomatic infected individuals or healthy subjects. HTLV-1 does not impair the MSC differentiation process into osteocytes and adipocytes. In addition, MSCs were efficiently infected with HTLV-1 in vitro through direct contact with HTLV-1-infected cells; however, cell-free virus particles were not capable of causing infection. In summary, HTLV-1 can alter MSC function, and this mechanism may contribute to the pathogenesis of this viral infection.


Assuntos
Infecções por HTLV-I/virologia , Vírus Linfotrópico T Tipo 1 Humano/fisiologia , Células-Tronco Mesenquimais/virologia , Diferenciação Celular , Células Cultivadas , Infecções por HTLV-I/genética , Infecções por HTLV-I/imunologia , Infecções por HTLV-I/fisiopatologia , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Fenótipo , Molécula 1 de Adesão de Célula Vascular/genética , Molécula 1 de Adesão de Célula Vascular/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA