Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Chem Biol Interact ; 387: 110790, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37939893

RESUMO

Breast cancer is a high-magnitude public health problem, continually challenging physicians and scientists worldwide in the field of drug therapy. 4-nitrochalcone (4NC) is a phenolic compound that has promising antitumor activity in vitro, but its application in breast cancer treatment is still poorly explored. This study aimed to evaluate the action of 4NC in vitro and in vivo breast cancer models. The cytotoxic potential of 4NC was tested towards MCF-7 and MDA-MD-231 breast cancer cells, with a lower impact in the non-tumor lineage HB4a. For in vivo studies, solid Ehrlich carcinoma (SEC) was used, a syngeneic mouse model with non-nuclear estrogen and progesterone positivity, characterized by immunohistochemistry. Daily oral administration of 4NC (25 mg kg-1) for 21 days led to a consistent reduction in tumor growth compared to the vehicle group. No signs of toxicity evaluated by hematological, biochemical, histological, and oxidative stress parameters were observed in mice, and the DL50 was >2000 mg kg-1. The effectors Raptor and S6K1 showed decreased activation, with a consequent reduction in protein synthesis; concomitantly, there was an increase in LC3-II levels, but the protective autophagic response was not completed, with the maintenance of p62 levels and cell death. These results open new possibilities for the use of 4NC as a tumor cell metabolism modulating agent.


Assuntos
Antineoplásicos , Chalconas , Neoplasias , Animais , Camundongos , Humanos , Preparações Farmacêuticas , Chalconas/farmacologia , Chalconas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Morte Celular , Autofagia , Linhagem Celular Tumoral , Células MCF-7 , Apoptose
2.
Int J Pharm X ; 6: 100193, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38204452

RESUMO

Nanoencapsulation of chemotherapeutics, including doxorubicin, can endow the formulations with unique properties, such as a decrease in adverse effects and toxicity. The chicken embryo model is an alternative and well-accepted strategy for evaluating the toxicity and efficacy of drugs and nanoformulations. Therefore, this study proposes the development of a new lipid nanocarrier for doxorubicin delivery (NanoLip-Dox) and posterior evaluation of toxicological profile and antitumoral efficacy against a breast tumor in chicken embryos. NanoLip-Dox showed a unimodal particle size (< 150 nm), negative zeta potential (-19.5 mV), absence of drug crystals, drug content of 0.099 mg·mL-1, and high entrapment efficiency (95%). NanoLip-Dox did not cause toxicity in the chicken embryos; in contrast, doxorubicin hydrochloride induced moderate irritation in the chorioallantoic membrane (at 862.1 µmol·L-1), a survival rate of 50% (at 1.7 µmol·L-1), and an increase in aspartate aminotransferase (at 862.1, 344.8, and 172.4 µmol·L-1). In addition, NanoLip-Dox (at 1.7 µmol·L-1) showed potent antitumor efficacy with a high tumor remission percentage (40.9 ± 9.7%) compared to the control group (8.6 ± 14.8%). These findings together with the absence of toxicity concerning morphological characteristics, weights of embryos and organs, hematologic parameters, and enzymatic activity (alanine aminotransferase, aspartate aminotransferase, and creatinine) suggest the safety and efficacy of NanoLip-Dox.

3.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;56: e12784, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1447678

RESUMO

This study aimed to evaluate in vitro the possible mechanisms underlying the estrogenic potential of benzalkonium chloride (BAC) as a disinfectant emerging contaminant. Effects of BAC at the environmentally-relevant concentrations on estrogen synthesis and estrogen receptor (ER) signaling were assessed using the H295R steroidogenesis assay and the MCF-7 proliferation assay, respectively. Results showed that exposure to BAC at concentrations of 1.0-1.5 mg/L for 48 h significantly increased estradiol production of H295R cells in a concentration-dependent manner. Transcription of steroidogenic genes 3β‐HSD2, 17β‐HSD1, 17β‐HSD4, and CYP19A were significantly enhanced by BAC. In ER-positive MCF-7 cells, exposure to 0.5-1.5 mg/L BAC for 48 h significantly promoted cell proliferation and increased the expressions of ERα and G-protein coupled estrogen receptor 1. Flow cytometry analysis showed that 0.5-1.5 mg/L BAC significantly decreased the percentage of cells in G0/G1 phase, increased the percentage in S phase, and BAC at concentrations of 1.0 and 1.5 mg/L increased the G2/M phase cells. Findings of the study suggested that BAC at environmentally-relevant concentrations might act as a xenoestrogen through its inhibitory effect on steroidogenesis and ER-mediated mechanism.

4.
Biomolecules ; 12(3)2022 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-35327574

RESUMO

Breast cancer (BC) is the most prevalent cancer and the one with the highest mortality among women worldwide. Although the molecular classification of BC has been a helpful tool for diagnosing and predicting the treatment of BC, developments are still being made to improve the diagnosis and find new therapeutic targets. Mitochondrial dysfunction is a crucial feature of cancer, which can be associated with cancer aggressiveness. Although the importance of mitochondrial dynamics in cancer is well recognized, its involvement in the mitochondrial function and bioenergetics context in BC molecular subtypes has been scantly explored. In this study, we combined mitochondrial function and bioenergetics experiments in MCF7 and MDA-MB-231 cell lines with statistical and bioinformatics analyses of the mitochondrial proteome of luminal A and basal-like tumors. We demonstrate that basal-like tumors exhibit a vicious cycle between mitochondrial fusion and fission; impaired but not completely inactive mitochondrial function; and the Warburg effect, associated with decreased oxidative phosphorylation (OXPHOS) complexes I and III. Together with the results obtained in the cell lines and the mitochondrial proteome analysis, two mitochondrial signatures were proposed: one signature reflecting alterations in mitochondrial functions and a second signature exclusively of OXPHOS, which allow us to distinguish between luminal A and basal-like tumors.


Assuntos
Neoplasias da Mama , Dinâmica Mitocondrial , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Metabolismo Energético , Feminino , Humanos , Masculino , Mitocôndrias/metabolismo , Proteoma/metabolismo
5.
Molecules ; 28(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36615253

RESUMO

Chromolaena tacotana is a source of flavonoids with antiproliferative properties in human breast cancer cells, the most common neoplasm diagnosed in patients worldwide. Until now, the mechanisms of cell death related to the antiproliferative activity of its flavonoids have not been elucidated. In this study, a novel flavanone (3',4'-dihydroxy-5,7-dimethoxy-flavanone) was isolated from the plant leaves and identified by nuclear magnetic resonance (NMR) and mass spectrometry (MS). This molecule selectively inhibited cell proliferation of triple-negative human breast cancer cell lines MDA-MB-231 and MCF-7 whit IC50 values of 25.3 µg/mL and 20.8 µg/mL, respectively, determined by MTT assays with a selectivity index greater than 3. Early and late pro-apoptotic characteristics were observed by annexin-V/7-AAD detection, accompanied by a high percentage of the Bcl-2 anti-apoptotic protein inactivated and the activation of effector Caspase-3 and/or 7 in breast cancer cells. It was verified the decreasing of XIAP more than Bcl-2 anti-apoptotic proteins expression, as well as the XIAP/Caspase-7 and Bcl-2/Bax complexes dissociation after flavanone treatment. Docking and molecular modeling analysis between the flavanone and the antiapoptotic protein XIAP suggests that the natural compound inhibits XIAP by binding to the BIR3 domain of XIAP. In this case, we demonstrate that the new flavanone isolated from leaves of Chomolaena tacotana has a promising and selective anti-breast cancer potential that includes the induction of intrinsic apoptosis by downregulation of the anti-apoptotic proteins XIAP and Bcl-2. New studies should deepen these findings to demonstrate its potential as an anticancer agent.


Assuntos
Proteínas Reguladoras de Apoptose , Apoptose , Neoplasias da Mama , Chromolaena , Flavanonas , Feminino , Humanos , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/antagonistas & inibidores , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células , Chromolaena/química , Flavanonas/química , Flavanonas/isolamento & purificação , Flavanonas/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
6.
Clin Transl Oncol ; 23(8): 1542-1548, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33948919

RESUMO

BACKGROUND: Cancerous inhibitor of protein phosphatase 2A (CIP2A) plays a critical role in the pathogenesis of various types of cancer. Here, we investigated whether manipulating CIP2A abundance could enhance the treatment effects of doxorubicin in MCF-7/ADR cells. METHODS: CIP2A silencing was achieved by specific siRNAs. Proliferation of breast cancer cell line MCF-7/ADR under effective doxorubicin concentrations after CIP2A silencing was examined by MTT assay. Wound healing assay was performed to quantify cell migration and caspase-3/-7 activities were measured for assessing the extent of apoptosis. RESULTS: First, our data confirmed that MCF-7/ADR cell proliferation was suppressed by doxorubicin in a dose-dependent manner. Additionally, knocking down of CIP2A could further decrease MCF-7 cell proliferation and migration, even in the presence of doxorubicin. Mechanistically, we have found that CIP2A silencing promoted cell apoptosis relative to doxorubicin alone or vehicle control groups. Lastly, phosphatase2A (PP2A) activity was potentiated and the autophagy markers, LC3B and Beclin1, were upregulated after knocking down CIP2A. CONCLUSION: Our findings support the potential benefits of using CIP2A inhibitor as a therapeutic agent to treat doxorubicin-resistant breast cancer.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Autoantígenos/genética , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Inativação Gênica , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Membrana/genética , Proteína Fosfatase 2/metabolismo , Apoptose , Autoantígenos/fisiologia , Autofagia , Proteína Beclina-1/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Caspase 3/metabolismo , Caspase 7/metabolismo , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/fisiologia , Células MCF-7 , Proteínas de Membrana/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , RNA Interferente Pequeno , Regulação para Cima
7.
Rev. bras. farmacogn ; 28(6): 703-709, Nov.-Dec. 2018. tab, graf
Artigo em Inglês | LILACS | ID: biblio-977748

RESUMO

ABSTRACT Plants are considered among the main sources of biologically active chemicals. The species Solidago chilensis Meyen, Asteraceae, is native to the southern parts of South America, where the aerial parts of the plant are commonly used for the treatment of inflammatory conditions. However, the effects of S. chilensis on human cancer cells remain to be elucidated. In this study, we evaluated the antiproliferative effects of the hydroalcoholic and dichloromethane extracts of S. chilensis, as well as their chemical constituents quercitrin and solidagenone against the five human tumor cell lines in vitro. The dichloromethane extract showed a promisor antiproliferative effects in vitro, especially against glioma cell line. Besides, the hydroalcoholic extract and quercitrin were inactive. The diterpene solidagenone showed highly potent antiproliferative effects against breast (MCF-7), kidney (786-0), and prostate cancer (PC-3) cells (total growth inhibition: TGI < 6.25 µg/ml). Solidagenone meets the theoretical physico-chemical criteria for bioavailability of drugs, according to the "Rule of Five" and, by theorical studies, the observed biological effects were probably related to the interaction of the molecule with nuclear receptors and as an enzymatic inhibitor. This study contributes to chemical study and to the identification of antiproliferative molecules in S. chilensis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA