RESUMO
Stroke is one of the principal cerebrovascular diseases in human populations and contributes to a majority of the functional impairments in the elderly. Recent discoveries have led to the inclusion of electroencephalography (EEG) in the complementary prognostic evaluation of patients. The present study describes the EEG, behavioral, and histological changes that occur following cerebral ischemia associated with treatment by G1, a potent and selective G protein-coupled estrogen receptor 1 (GPER1) agonist in a rat model. Treatment with G1 attenuated the neurological deficits induced by ischemic stroke from the second day onward, and reduced areas of infarction. Treatment with G1 also improved the total brainwave power, as well as the theta and alpha wave activity, specifically, and restored the delta band power to levels similar to those observed in the controls. Treatment with G1 also attenuated the peaks of harmful activity observed in the EEG indices. These improvements in brainwave activity indicate that GPER1 plays a fundamental role in the mediation of cerebral injury and in the behavioral outcome of ischemic brain injuries, which points to treatment with G1 as a potential pharmacological strategy for the therapy of stroke.
Assuntos
Lesões Encefálicas , Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Ratos , Humanos , Animais , Idoso , AVC Isquêmico/tratamento farmacológico , Acidente Vascular Cerebral/complicações , Acidente Vascular Cerebral/tratamento farmacológico , Isquemia Encefálica/complicações , Isquemia Encefálica/tratamento farmacológico , Isquemia Encefálica/patologia , Infarto CerebralRESUMO
Glucose transporter (GLUT)3 up-regulation is an adaptive response activated to prevent cellular damage when brain metabolic energy is reduced. Resveratrol is a natural polyphenol with anti-oxidant and anti-inflammatory features that protects neurons against damage induced in cerebral ischemia. Since transcription factors sensitive to oxidative stress and inflammation modulate GLUT3 expression, the purpose of this work was to assess the effect of resveratrol on GLUT3 expression levels after ischemia. Male Wistar rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) followed by different times of reperfusion. Resveratrol (1.9 mg/kg; i. p.) was administered at the onset of the restoration of the blood flow. Quantitative-PCR and Western blot showed that MCAO provoked a substantial increase in GLUT3 expression in the ipsilateral side to the lesion of the cerebral cortex. Immunofluorescence assays indicated that GLUT3 levels were upregulated in astrocytes. Additionally, an important increase in GLUT3 occurred in other cellular types (e.g., damaged neurons, microglia, or infiltrated macrophages). Immunodetection of the microtubule-associated protein 2 (MAP2) showed that MCAO induced severe damage to the neuronal population. However, the administration of resveratrol at the time of reperfusion resulted in injury reduction. Resveratrol also prevented the MCAO-induced increase of GLUT3 expression. In conclusion, resveratrol protects neurons from damage induced by ischemia and prevents GLUT3 upregulation in the damaged brain that might depend on AMPK activation.
RESUMO
Neuroinflammation triggered by the expression of damaged-associated molecular patterns released from dying cells plays a critical role in the pathogenesis of ischemic stroke. However, the benefits from the control of neuroinflammation in the clinical outcome have not been established. In this study, the effectiveness of intranasal, a highly efficient route to reach the central nervous system, and intraperitoneal dexamethasone administration in the treatment of neuroinflammation was evaluated in a 60-min middle cerebral artery occlusion (MCAO) model in C57BL/6 male mice. We performed a side-by-side comparison using intranasal versus intraperitoneal dexamethasone, a timecourse including immediate (0 h) or 4 or 12 h poststroke intranasal administration, as well as 4 intranasal doses of dexamethasone beginning 12 h after the MCAO versus a single dose at 12 h to identify the most effective conditions to treat neuroinflammation in MCAO mice. The best results were obtained 12 h after MCAO and when mice received a single dose of dexamethasone (0.25 mg/kg) intranasally. This treatment significantly reduced mortality, neurological deficits, infarct volume size, blood-brain barrier permeability in the somatosensory cortex, inflammatory cell infiltration, and glial activation. Our results demonstrate that a single low dose of intranasal dexamethasone has neuroprotective therapeutic effects in the MCAO model, showing a better clinical outcome than the intraperitoneal administration. Based on these results, we propose a new therapeutic approach for the treatment of the damage process that accompanies ischemic stroke.
Assuntos
Anti-Inflamatórios/administração & dosagem , Lesões Encefálicas/tratamento farmacológico , Isquemia Encefálica/tratamento farmacológico , Dexametasona/administração & dosagem , AVC Isquêmico/tratamento farmacológico , Administração Intranasal , Animais , Barreira Hematoencefálica/efeitos dos fármacos , Barreira Hematoencefálica/patologia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Lesões Encefálicas/mortalidade , Lesões Encefálicas/patologia , Isquemia Encefálica/mortalidade , Isquemia Encefálica/patologia , Infarto da Artéria Cerebral Média/tratamento farmacológico , Infarto da Artéria Cerebral Média/mortalidade , Infarto da Artéria Cerebral Média/patologia , AVC Isquêmico/mortalidade , AVC Isquêmico/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BLRESUMO
Vascular endothelial growth factor (VEGF) has long been connected to the development of tissue lesion following ischemic stroke. Contradictory findings either situate VEGF as a promoter of large infarct volumes or as a potential attenuator of damage due to its well documented neuroprotective capability. The core of this discrepancy mostly lies on the substantial number of pleiotropic functions driven by VEGF. Mechanistically, these effects are activated through several VEGF receptors for which various closely related ligands exist. Here, we tested in an experimental model of stroke how the differential activation of VEGF receptors 1 and 2 would modify functional and histological outcomes in the acute phase post-ischemia. We also assessed whether VEGF-mediated responses would involve the modulation of inflammatory mechanisms and how this trophic factor acted specifically on neuronal receptors. We produced ischemic infarcts in adult rats by transiently occluding the middle cerebral artery and induced the pharmacological inhibition of VEGF receptors by i.c.v. administration of the specific VEGFR2 inhibitor SU1498 and the pan-VEGFR blocker Axitinib. We evaluated the neurological performance of animals at 24 h following stroke and the occurrence of brain infarctions analyzed at the gross metabolic and neuronal viability levels. We also assessed the induction of peripheral pro- and anti-inflammatory cytokines in the cerebrospinal fluid and blood and assessed the polarization of activated microglia. Finally, we studied the direct involvement of cortical neuronal receptors for VEGF with in vitro assays of excitotoxic damage. Preferential VEGFR1 activation by the endogenous ligand promotes neuronal protection and prevents the presentation of large volume infarcts that highly correlate with neurological performance, while the concomitant activation of VEGFR2 reduces this effect, even in the presence of exogenous ligand. This process partially involves the polarization of microglia to the state M2. At the cellular level, neurons also responded better to the preferential activation of VEGFR1 when challenged to N-methyl-D-aspartate-induced excitotoxicity. Endogenous activation of VEGFR2 hinders the neuroprotective mechanisms mediated by the activation of VEGFR1. The selective modulation of these concurrent processes might enable the development of therapeutic approaches that target specific VEGFR1-mediated signaling during the acute phase post-stroke.