RESUMO
In this work, the problem of master-slave outer synchronization in different inner-outer network topologies is presented. Specifically, the studied inner-outer network topologies are coupled in master-slave configuration, where some particular scenarios concerning inner-outer topologies are addressed in order to disclose a suitable coupling strength to achieve outer synchronization. The novel MACM chaotic system is used as a node in the coupled networks, which presents robustness in its bifurcation parameters. Extensive numerical simulations are presented where the stability of the inner-outer network topologies is analyzed through a master stability function approach.
RESUMO
In recent years, chaotic synchronization has received a lot of interest in applications in different fields, including in the design of private and secure communication systems. The purpose of this paper was to achieve the synchronization of the Méndez-Arellano-Cruz-Martínez (MACM) 3D chaotic system coupled in star topology. The MACM electronic circuit is used as chaotic nodes in the communication channels to achieve synchronization in the proposed star network; the corresponding electrical hardware in the slave stages receives the coupling signal from the master node. In addition, a novel application to the digital image encryption process is proposed using the coupled-star-network; and the switching parameter technique is finally used to transmit an image as an encrypted message from the master node to the slave coupled nodes. Finally, the cryptosystem is submitted to statistical tests in order to show the effectiveness in multi-user secure image applications.