Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 13: 1040932, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36386619

RESUMO

Quorum sensing (QS) is a bacterial cell-cell communication system with genetically regulated mechanisms dependent on cell density. Canonical QS systems in gram-negative bacteria possess an autoinducer synthase (LuxI family) and a transcriptional regulator (LuxR family) that respond to an autoinducer molecule. In Gram-positive bacteria, the LuxR transcriptional regulators "solo" (not associated with a LuxI homolog) may play key roles in intracellular communication. Arthrobacter sp. UMCV2 is an actinobacterium that promotes plant growth by emitting the volatile organic compound N, N-dimethylhexadecylamine (DMHDA). This compound induces iron deficiency, defense responses in plants, and swarming motility in Arthrobacter sp. UMCV2. In this study, the draft genome of this bacterium was assembled and compared with the genomes of type strains of the Arthrobacter genus, finding that it does not belong to any previously described species. Genome explorations also revealed the presence of 16 luxR-related genes, but no luxI homologs were discovered. Eleven of these sequences possess the LuxR characteristic DNA-binding domain with a helix-turn-helix motif and were designated as auto-inducer-related regulators (AirR). Four sequences possessed LuxR analogous domains and were designated as auto-inducer analogous regulators (AiaR). When swarming motility was induced with DMHDA, eight airR genes and two aiaR genes were upregulated. These results indicate that the expression of multiple luxR-related genes is induced in actinobacteria, such as Arthrobacter sp. UMCV2, by the action of the bacterial biocompound DMHDA when QS behavior is produced.

2.
Artigo em Inglês | MEDLINE | ID: mdl-25759807

RESUMO

LuxR solo transcriptional regulators contain both an autoinducer binding domain (ABD; N-terminal) and a DNA binding Helix-Turn-Helix domain (HTH; C-terminal), but are not associated with a cognate N-acyl homoserine lactone (AHL) synthase coding gene in the same genome. Although a few LuxR solos have been characterized, their distributions as well as their role in bacterial signal perception and other processes are poorly understood. In this study we have carried out a systematic survey of distribution of all ABD containing LuxR transcriptional regulators (QS domain LuxRs) available in the InterPro database (IPR005143), and identified those lacking a cognate AHL synthase. These LuxR solos were then analyzed regarding their taxonomical distribution, predicted functions of neighboring genes and the presence of complete AHL-QS systems in the genomes that carry them. Our analyses reveal the presence of one or multiple predicted LuxR solos in many proteobacterial genomes carrying QS domain LuxRs, some of them harboring genes for one or more AHL-QS circuits. The presence of LuxR solos in bacteria occupying diverse environments suggests potential ecological functions for these proteins beyond AHL and interkingdom signaling. Based on gene context and the conservation levels of invariant amino acids of ABD, we have classified LuxR solos into functionally meaningful groups or putative orthologs. Surprisingly, putative LuxR solos were also found in a few non-proteobacterial genomes which are not known to carry AHL-QS systems. Multiple predicted LuxR solos in the same genome appeared to have different levels of conservation of invariant amino acid residues of ABD questioning their binding to AHLs. In summary, this study provides a detailed overview of distribution of LuxR solos and their probable roles in bacteria with genome sequence information.


Assuntos
Bactérias/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/metabolismo , Transativadores/química , Transativadores/metabolismo , Sequência de Aminoácidos , Bactérias/química , Bactérias/classificação , Bactérias/genética , Biologia Computacional , Sequência Conservada , Genoma Bacteriano , Dados de Sequência Molecular , Filogenia , Proteínas Repressoras/genética , Transativadores/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA