Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Arch Toxicol ; 98(5): 1561-1572, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38498159

RESUMO

Envenomation by Loxosceles spiders can result in local and systemic pathologies. Systemic loxoscelism, which can lead to death, is characterized by intravascular hemolysis, platelet aggregation, and acute kidney injury. Sphingomyelinase D (SMase D) in Loxosceles spider venom is responsible for both local and systemic pathologies, and has been shown to induce metalloprotease activity. As the complement system is involved in many renal pathologies and is involved in hemolysis in systemic loxoscelism, the aim of this study was to investigate its role and the role of complement regulators and metalloproteases in an in vitro model of Loxosceles venom induced renal pathology. We investigated the effects of the venom/SMase D and the complement system on the HK-2 kidney cell line. Using cell viability assays, western blotting, and flow cytometry, we show that human serum, as a source of complement, enhanced the venom/SMase D induced cell death and the deposition of complement components and properdin. Inhibitors for ADAM-10 and ADAM-17 prevented the venom induced release of the of the complement regulator MCP/CD46 and reduced the venom/SMase D induced cell death. Our results show that the complement system can contribute to Loxosceles venom induced renal pathology. We therefore suggest that patients experiencing systemic loxoscelism may benefit from treatment with metalloproteinase inhibitors and complement inhibitors, but this proposition should be further analyzed in future pre-clinical and clinical assays.


Assuntos
Esfingomielina Fosfodiesterase , Picada de Aranha , Venenos de Aranha , Humanos , Esfingomielina Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/toxicidade , Rim , Morte Celular
2.
Arch Toxicol, v. 98, p. 1561-1572, 2024
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5299

RESUMO

Envenomation by Loxosceles spiders can result in local and systemic pathologies. Systemic loxoscelism, which can lead to death, is characterized by intravascular hemolysis, platelet aggregation, and acute kidney injury. Sphingomyelinase D (SMase D) in Loxosceles spider venom is responsible for both local and systemic pathologies, and has been shown to induce metalloprotease activity. As the complement system is involved in many renal pathologies and is involved in hemolysis in systemic loxoscelism, the aim of this study was to investigate its role and the role of complement regulators and metalloproteases in an in vitro model of Loxosceles venom induced renal pathology. We investigated the effects of the venom/SMase D and the complement system on the HK-2 kidney cell line. Using cell viability assays, western blotting, and flow cytometry, we show that human serum, as a source of complement, enhanced the venom/SMase D induced cell death and the deposition of complement components and properdin. Inhibitors for ADAM-10 and ADAM-17 prevented the venom induced release of the of the complement regulator MCP/CD46 and reduced the venom/SMase D induced cell death. Our results show that the complement system can contribute to Loxosceles venom induced renal pathology. We therefore suggest that patients experiencing systemic loxoscelism may benefit from treatment with metalloproteinase inhibitors and complement inhibitors, but this proposition should be further analyzed in future pre-clinical and clinical assays.

3.
Int J Biol Macromol ; 187: 66-75, 2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34246677

RESUMO

Loxoscelism is the most dangerous araneism form in Brazil and antivenom therapy is the recommended treatment. Antivenom is produced by horse immunization with Loxosceles spider venom, which is toxic for the producer animal. Moreover, due to the high amount of venom required for horse hyperimmunization, new strategies for antigens obtention have been proposed. In this sense, our research group has previously produced a non-toxic recombinant multiepitopic protein derived from Loxosceles toxins (rMEPLox). rMEPLox was a successful immunogen, being able to induce the production of neutralizing antibodies, which could be used in the Loxoscelism treatment. However, rMEPLox obtention procedure requires optimization, as its production needs to be scaled up to suit antivenom manufacture. Therefore, an effective protocol development for rMEPlox production would be advantageous. To achieve this objective, we evaluated the influence of different cultivation conditions for rMEPLox optimum expression. The optimum conditions to obtain large amounts of rMEPlox were defined as the use of C43(DE3)pLysS as a host strain, 2xTY medium, 0.6 mM IPTG, biomass pre induction of OD600nm = 0.4 and incubation at 30 °C for 16 h. Following the optimized protocol, 39.84 mg/L of soluble rMEPLox was obtained and tested as immunogen. The results show that the obtained rMEPLox preserved the previously described immunogenicity, and it was able to generate antibodies that recognize different epitopes of the main Loxosceles venom toxins, which makes it a promising candidate for the antivenom production for loxoscelism treatment.


Assuntos
Escherichia coli , Expressão Gênica , Aranhas/genética , Animais , Antivenenos/biossíntese , Antivenenos/genética , Antivenenos/imunologia , Antivenenos/isolamento & purificação , Escherichia coli/genética , Escherichia coli/metabolismo , Camundongos Endogâmicos BALB C , Diester Fosfórico Hidrolases/biossíntese , Diester Fosfórico Hidrolases/genética , Diester Fosfórico Hidrolases/imunologia , Diester Fosfórico Hidrolases/isolamento & purificação , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/isolamento & purificação , Venenos de Aranha/biossíntese , Venenos de Aranha/genética , Venenos de Aranha/imunologia , Venenos de Aranha/isolamento & purificação
4.
Front Immunol ; 9: 653, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29666624

RESUMO

Loxoscelism is the most important form of araneism in South America. The treatment of these accidents uses heterologous antivenoms obtained from immunization of production animals with crude loxoscelic venom. Due to the scarcity of this immunogen, new alternatives for its substitution in antivenom production are of medical interest. In the present work, three linear epitopes for Loxosceles astacin-like protease 1 (LALP-1) (SLGRGCTDFGTILHE, ENNTRTIGPFDYDSIMLYGAY, and KLYKCPPVNPYPGGIRPYVNV) and two for hyaluronidase (LiHYAL) (NGGIPQLGDLKAHLEKSAVDI and ILDKSATGLRIIDWEAWR) from Loxosceles intermedia spider venom were identified by SPOT-synthesis technique. One formerly characterized linear epitope (DFSGPYLPSLPTLDA) of sphingomyelinase D (SMase D) SMase-I from Loxosceles laeta was also chosen to constitute a new recombinant multiepitopic protein. These epitopes were combined with a previously produced chimeric multiepitopic protein (rCpLi) composed by linear and conformational B-cell epitopes from SMase D from L. intermedia venom, generating a new recombinant multiepitopic protein derived from loxoscelic toxins (rMEPLox). We demonstrated that rMEPLox is non-toxic and antibodies elicited in rabbits against this antigen present reactivity in ELISA and immunoblot assays with Brazilian L. intermedia, L. laeta, L. gaucho, and L. similis spider venoms. In vivo and in vitro neutralization assays showed that anti-rMEPLox antibodies can efficiently neutralize the sphingomyelinase, hyaluronidase, and metalloproteinase activity of L. intermedia venom. This study suggests that this multiepitopic protein can be a suitable candidate for experimental vaccination approaches or for antivenom production against Loxosceles spp. venoms.


Assuntos
Anticorpos Neutralizantes/imunologia , Epitopos de Linfócito B/imunologia , Diester Fosfórico Hidrolases/imunologia , Venenos de Aranha/imunologia , Animais , Feminino , Imunização , Camundongos Endogâmicos BALB C , Coelhos , Proteínas Recombinantes/imunologia
5.
Toxicon ; 116: 35-42, 2016 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-26256792

RESUMO

Loxoscelism is caused by envenomation by spiders from Loxosceles genus. Clinical symptoms only appear a few hours after envenomation and can evolve in local reactions, such as dermonecrosis, and systemic reactions, including intravascular haemolysis, intravascular coagulation and renal failure. Considering that alterations in the microcirculatory network are involved in the pathogenesis of different diseases, including the inflammatory process, the aim of this study was to investigate the action of venoms of males and females of Loxosceles intermedia and Loxosceles laeta on the microcirculatory network and examine the systemic production of inflammatory mediators in a murine model of loxoscelism. We observed that during systemic envenomation, the alterations in the microcirculation include increase in the number of rolling cells, which was more intense in animals injected with female Loxosceles spider venoms. This positively correlated with increase in TNF-α and NO serum levels, induction of which was higher by female venoms when compared with male venoms. The increase of leukocytes rolling was not accompanied by increase of cell adhesion. The absence of leukocyte extravasation may explain why in mice, in contrast to humans, no cutaneous loxoscelism occurs. Thus, targeting the neutrophil adhesion and extravasation in Loxosceles envenomed patients may prevent cutaneous pathology.


Assuntos
Microcirculação/efeitos dos fármacos , Picada de Aranha/fisiopatologia , Venenos de Aranha/toxicidade , Animais , Feminino , Leucócitos/efeitos dos fármacos , Leucócitos/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neutrófilos/efeitos dos fármacos , Óxido Nítrico/sangue , Fator de Necrose Tumoral alfa/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA