Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Biosensors (Basel) ; 14(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38534235

RESUMO

This work presents a low-cost transcription loop-mediated isothermal amplification (RT-LAMP) instrument for nucleic acid detection, employing an Arduino Nano microcontroller. The cooling system includes customized printed circuit boards (PCBs) that serve as electrical resistors and incorporate fans. An aluminum block is designed to accommodate eight vials. The system also includes two PCB heaters-one for sample heating and the other for vial lid heating to prevent condensation. The color detection system comprises a TCS3200 color 8-sensor array coupled to one side of the aluminum heater body and a white 8-LED array coupled to the other side, controlled by two Multiplexer/Demultiplexer devices. LED light passes through the sample, reaching the color sensor and conveying color information crucial for detection. The top board is maintained at 110 ± 2 °C, while the bottom board is held at 65 ± 0.5 °C throughout the RT-LAMP assay. Validation tests successfully demonstrated the efficacy of the colorimetric RT-LAMP reactions using SARS-CoV-2 RNA amplification as a sample viability test, achieving 100% sensitivity and 97.3% specificity with 66 clinical samples. Our instrument offers a cost-effective (USD 100) solution with automated result interpretation and superior sensitivity compared to visual inspection. While the prototype was tested with SARS-CoV-2 RNA samples, its versatility extends to detecting other pathogens using alternative primers, showcasing its potential for broader applications in biosensing.


Assuntos
RNA Viral , DNA Polimerase Dirigida por RNA , DNA Polimerase Dirigida por RNA/genética , RNA Viral/genética , Alumínio , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , RNA Polimerases Dirigidas por DNA , Sensibilidade e Especificidade
2.
Vet Res Commun ; 48(1): 103-111, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37540477

RESUMO

Leptospirosis is a zoonotic disease with significant public health and economic impact worldwide. Rapid and accurate diagnosis is essential for effective prevention and treatment. This study optimized a loop-mediated isothermal amplification (LAMP) assay using BFo isothermal DNA polymerase with different colorimetric indicators. LAMP was able to detect DNA from pathogenic and intermediate leptospires, while non-pathogenic leptospires and other non-leptospiral microorganisms were negative. LAMP assay combined with calcein showed a tenfold higher limit of detection (1 ng of leptospiral DNA per reaction) than LAMP combined with hydroxynaphthol blue or end-point PCR lipL32 (10 ng of DNA per reaction). Animal samples were collected from infected and non-infected Golden Syrian hamsters (Mesocricetus auratus) to evaluate and compare the performance of LAMP and PCR. These techniques showed a substantial agreement according to Cohen's kappa statistic, being both useful techniques for detecting leptospiral DNA in clinical samples. Overall, this study demonstrates that the LAMP assay is a sensitive, specific, rapid, and simple tool for the detection of leptospiral DNA. It has the potential to facilitate the diagnosis of leptospirosis, particularly in low-income regions with limited diagnosis resources.


Assuntos
Leptospira , Leptospirose , Animais , Cricetinae , DNA , Leptospira/genética , Leptospirose/diagnóstico , Leptospirose/veterinária , Mesocricetus , Reação em Cadeia da Polimerase/veterinária , Sensibilidade e Especificidade
3.
Eur J Pediatr ; 182(11): 5131-5136, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37684486

RESUMO

Universal congenital cytomegalovirus (cCMV) screening in saliva is increasingly recommended. The aim of our study was to correlate the performance of a point-of-care rapid molecular test with CMV real time PCR (CMV RT-PCR) detection, using saliva pool-testing in newborns under a universal screening strategy. Saliva swabs were prospectively collected from newborns < 21 days old and tested by Alethia-LAMP-CMV assay in pools of 5 samples. In positive pools, subjects were tested individually and by saliva and urine CMV RT-PCR. A subset of negative pools were studied with both techniques and viral loads in whole blood were determined in positive patients. From 1,642 newborns included in 328 pools, 8 were confirmed by urine CMV RT-PCR, (cCMV prevalence 0,49%). The PPA and NNA of the pooled saliva Alethia-LAMP-CMV testing were 87,5% and 99,8% with a negative and positive predictive value of 99,9% and 77,7%, respectively. Two false positives were detected (0,12%). A subset of 17 negative pools (85 samples), studied by saliva CMV RT-PCR, showed 100% concordance.  Conclusion: CMV pool-testing using a rapid molecular test in saliva proved feasible when compared to PCR gold standards. This strategy could improve cost-effectiveness for cCMV universal neonatal screening, based on the low prevalence of the infection and could be a more affordable approach in less developed regions with reduced detection capacity. What is Known: • cCMV is the most frequent congenital infection and a leading nongenetic cause of sensorineural hearing loss and brain disease. • Universal screening could allow early detection of congenitally infected infants, improving clinical outcome. • Saliva PCR is the preferred and non-invasive test for newborn cCMV screening. What is New: • The feasibility of a universal cCMV screening by pool-testing in saliva using a rapid test in pools of 5 samples. • PPA and NPA were 87,5 and 99,8% compared to CMV PCR in urine. • This strategy could be relevant specially in LMIC where detection capacity is reduced and could improve cost-effectiveness. • cCMV prevalence in our center was 0,49%.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Lactente , Humanos , Recém-Nascido , Citomegalovirus/genética , Saliva , Infecções por Citomegalovirus/diagnóstico , Triagem Neonatal/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos
4.
Exp Ther Med ; 26(2): 398, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37522063

RESUMO

The detection of coronavirus disease 2019 cases represents a significant challenge at the epidemiological level. Limitations exist in effectively detecting asymptomatic cases, achieving good follow-up in hospitals without the infrastructure for reverse transcription-quantitative PCR (RT-qPCR) or in difficult-to-access areas and developing methods with the need for less invasive sampling procedures. Therefore, the present study evaluated the performance of the direct reverse transcription loop-mediated isothermal amplification (RT-LAMP) test for detecting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the saliva and nasal samples of asymptomatic individuals belonging to the university population. In addition, this test was also assessed for effectiveness in symptomatic individuals referred from a hospital with poor infrastructure in molecular biology and located outside the urban area. The RT-LAMP assay was compared with the results obtained from the RT-qPCR nasopharyngeal swab test, where the diagnosis was confirmed by lateral flow immunoassay test for rapid antigen detection. A total of 128 samples were analyzed, of which 43% were symptomatic positive individuals, 25% were asymptomatic positive individuals and 32% were SARS-CoV2-negative control individuals. Among positive individuals, no differences were found between the Cq values determined by RT-qPCR. A sensitivity of 96.5% and a specificity of 97.6% was reported for the detection of SARS-CoV-2 in symptomatic individuals by salivary and nasal RT-LAMP, as well as a sensitivity of 100% and a specificity of 97.6% for the detection of SARS-CoV-2 in asymptomatic individuals. These findings indicated that performance of the direct RT-LAMP test using saliva and nasal samples has high sensitivity and specificity, which in turn suggest that it is a viable and reliable alternative for use in epidemiological monitoring.

5.
MethodsX ; 10: 102223, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37251650

RESUMO

Bovine tuberculosis is a prevalent zoonotic disease that causes high risks for production animals, dairy producers and consumers, together with significant economic losses. Thus, methods for easy, fast and specific detection of Mycobacterium bovis in small and medium-sized livestock under field conditions are very required. In this work, a Loop-Mediated Isothermal Amplification LAMP-PCR targeting the Region of Difference 12 (RD12) of M. bovis genome was designed for the purpose of identification. A set of six primers designed for the isothermal amplification of five different genomic fragments led to the specific identification of M. bovis from other mycobacterial species. A basic colorimetric reaction was clearly observed at first sight under natural light, indicating positive identification of M. bovis in a maximum of 30 min of isothermal amplification at 65 °C. The limit of detection was near 50 fg of M. bovis genomic DNA, corresponding approximately to 10 copies of the genome. •The proposed LAMP-PCR amplification of M. bovis genomic DNA might be performed by untrained laboratory personnel.•Specific identification of M. bovis LAMP is possible in 30 min at 65.. C using a simple water bath.•The basic colorimetric reaction for M. bovis identification could be observed with the naked eye under natural light.

6.
Infect Dis Poverty ; 12(1): 53, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37217984

RESUMO

BACKGROUND: Malaria continues to cause burden in various parts of the world. Haiti, a Caribbean country, is among those aiming to eliminate malaria within a few years. Two surveys were conducted in Haiti during which we aimed to evaluate the performance of the simple and rapid procedure for ultra-rapid extraction-loop-mediated isothermal amplification (PURE-LAMP) method with dried blood spots as an alternative diagnostic method for malaria in the context of low to very low rates of transmission. METHODS: Febrile and afebrile people were recruited from three administrative divisions within Haiti: Nippes, Sud and Grand'Anse, during the summers of 2017 (early August to early September) and 2018 (late July to late August). Their blood samples were tested by microscopy, rapid diagnostic tests (RDT), PURE-LAMP and nested PCR to detect Plasmodium infection. Sensitivity, specificity, positive and negative predictive values and kappa statistics were estimated with the nested PCR results as the gold standard. RESULTS: Among 1074 samples analyzed, a positive rate of 8.3% was calculated based on the nested PCR results. Among febrile participants, the rates in 2017 and 2018 were 14.6% and 1.4%, respectively. Three positives were detected among 172 afebrile participants in 2018 by PURE-LAMP and nested PCR, and all three were from the same locality. There was no afebrile participants recruited in 2017. The PURE-LAMP, RDT and microscopy had respective sensitivities of 100%, 85.4% and 49.4%. All of the testing methods had specificities over 99%. CONCLUSIONS: This study confirmed the high performance of the PURE-LAMP method to detect Plasmodium infection with dried blood spots and recommends its use in targeted mass screening and treatment activities in low endemic areas of malaria.


Assuntos
Malária Falciparum , Malária , Humanos , Haiti , Sensibilidade e Especificidade , Malária/diagnóstico , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas de Diagnóstico Molecular/métodos , Malária Falciparum/diagnóstico , Malária Falciparum/epidemiologia , Plasmodium falciparum
7.
Mini Rev Med Chem ; 23(4): 480-496, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35927908

RESUMO

Molecular biology is a widely used and widespread technique in research and as a laboratory diagnostic tool, aiming to investigate targets of interest from the obtainment, identification, and analysis of genetic material. In this context, methods, such as Polymerase Chain Reaction (PCR), Reverse Transcription Polymerase Chain Reaction (RT-PCR), real-time PCR, loopmediated isothermal amplification (LAMP), and loop-mediated isothermal amplification with reverse transcription (RT-LAMP), can be cited. Such methods use enzymes, buffers, and thermosensitive reagents, which require specific storage conditions. In an attempt to solve this problem, the lyophilization procedure (dehydration process by sublimation) can be applied, aiming to preserve and prolong the useful life of the reaction components in cases of temperature variation. In this review, we present a synthesis of the lyophilization process, describing the events of each step of the procedure and providing general information about the technique. Moreover, we selected lyophilization protocols found in the literature, paying attention to the conditions chosen by the authors for each step of the procedure, and structured the main data in tables, facilitating access to information for researchers who need material to produce new functional protocols.


Assuntos
Liofilização , Biologia Molecular , Humanos , Biologia Molecular/instrumentação , Biologia Molecular/métodos , Água/química , Liofilização/instrumentação , Liofilização/métodos , Reação em Cadeia da Polimerase/instrumentação , Reação em Cadeia da Polimerase/métodos , Criopreservação , Sistemas Automatizados de Assistência Junto ao Leito
8.
Rev. biol. trop ; Rev. biol. trop;70(1)dic. 2022.
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1387718

RESUMO

Abstract Introduction: Most successful cases of COVID-19 pandemic mitigation and handling have relied on extensive reverse-transcription quantitative polymerase chain reaction (RT-qPCR). However, many emerging economies have struggled with current molecular testing demands due to economic, technical and technological constraints. Objective: To define a potential diagnostic protocol to increase testing capacity in current and post-pandemic conditions. Methods: We reviewed the literature, patents and commercial applications, for alternatives. Results: We found a good potential in saliva samples, viral inactivation and quick RNA extraction by heating; the use of an isothermal technology such as loop mediated isothermal amplification (LAMP) and naked eye test-result visualization by in-tube colorimetry or turbidity. Conclusions: Saliva samples with quick RNA extraction by heating and colorimetric LAMP are promising options for countries with economic and infrastructure limitations.


Resumen Introducción: La mayoría de los casos exitosos de mitigación y manejo de la pandemia de COVID-19 se han dado mediante pruebas basadas en la reacción en cadena de la polimerasa cuantitativa (RT-qPCR por sus siglas en inglés). Sin embargo, muchas economías emergentes han tenido problemas con las demandas actuales de pruebas moleculares debido a limitaciones económicas, técnicas y tecnológicas. Objetivo: Definir un protocolo de diagnóstico potencial para aumentar la capacidad de prueba en las condiciones actuales y posteriores a la pandemia. Métodos: Revisamos la literatura, las patentes y las aplicaciones comerciales, en busca de alternativas. Resultados: Encontramos un buen potencial en muestras de saliva, inactivación viral y extracción rápida de ARN por calentamiento; el uso de una tecnología isotérmica como la amplificación isotérmica mediada por horquillas (LAMP, por sus siglas en inglés) y la visualización del resultado de la prueba a simple vista mediante colorimetría o turbidez en el tubo. Conclusiones: Las muestras de saliva con extracción rápida de ARN por calentamiento y LAMP colorimétrico son opciones prometedoras para países con limitaciones económicas y de infraestructura.


Assuntos
Humanos , Técnicas de Diagnóstico Molecular/métodos , Teste Sorológico para COVID-19 , COVID-19
9.
Exp Parasitol ; 242: 108389, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36206937

RESUMO

Schistosomiasis is a life-threatening infectious disease categorized by the World Health Organization as a public health issue. New molecular diagnostic alternatives for intestinal schistosomiasis caused by Schistosoma mansoni, such as the loop-mediated isothermal amplification (LAMP), a fast and simple amplification technique, have been proposed for control of this NTD in low-endemicity locations. A LAMP assay was performed to detect the internal transcribed spacer 1 ribosomal gene of S. mansoni (SmITS1-LAMP) in 322 DNA extracted from stool samples from schistosomiasis endemic area in Brazil. Kato-Katz analysis of human stool samples was used as the gold standard test, detecting 144 positive samples. SmITS1-LAMP detection limit achieved a maximum analytical sensitivity of 10 fg/µL using S. mansoni genomic DNA, subsequently detecting 17/144 (11.8%) positive samples. SmITS1-LAMP sensitivity and specificity were 12% (95%CI: 7%-18%) and 93% (95%CI: 89%-96%), respectively. Positive predictive value (PPV) and negative predictive value (NPV) were 59% (95%CI: 39% - 76%); and 57% (95%CI: 51% - 62%), respectively. Most cases involved men (61.8%), predominantly young adults (20-39 years old) in cases diagnosed by Kato-Katz and adults (40-59 years old) in cases diagnosed by LAMP. The low number of eggs per gram of stool (1-99 EPG) was the most frequently identified by both Kato-Katz and LAMP. Further studies are needed to evaluate the applicability of SmMIT-LAMP on Schistosoma mansoni diagnosis and surveillance of schistosome infections.


Assuntos
Esquistossomose mansoni , Esquistossomose , Masculino , Adulto Jovem , Animais , Humanos , Adulto , Pessoa de Meia-Idade , Brasil/epidemiologia , Esquistossomose mansoni/diagnóstico , Esquistossomose mansoni/epidemiologia , Schistosoma mansoni/genética , Fezes , Sensibilidade e Especificidade , Prevalência
10.
Rev. peru. med. exp. salud publica ; 39(3): 312-320, jul.-sep. 2022. tab, graf
Artigo em Espanhol | LILACS, LIPECS | ID: biblio-1410010

RESUMO

RESUMEN Objetivo. Desarrollar y evaluar un método de bajo costo basado en celulosa para la purificación rápida y amplificación directa de ADN de Bordetella pertussis de hisopados nasofaríngeos. Materiales y métodos. Se prepararon discos de celulosa y se evaluaron diferentes parámetros (buffers de lisis/lavado, número de discos y elución de ADN). El método se acopló a una amplificación directa por PCR en tiempo real (qPCR) y se estimó el rendimiento utilizando hisopados nasofaríngeos que fueron positivos (n=100) y negativos (n=50) para ADN B. pertussis por qPCR, comparado con el método basado en columnas de sílice. Se calculó el grado de concordancia, sensibilidad, especificidad, valor predictivo positivo (VPP) y valor predictivo negativo (VPN). Se evaluó la factibilidad del método rápido para ser acoplado a un ensayo colorimétrico de amplificación isotérmica mediada por lazo (LAMP). Resultados. El método rápido con un disco de celulosa y buffer de lisis y lavado conteniendo PVP-40 y Tween 20, respectivamente, mostró una mayor capacidad para purificar ADN amplificable de B. pertussis. El método tuvo una sensibilidad de 89,0% (IC95%, 80,2%-94,9%) y una especificidad de 98,5% (IC95%, 92,1%-100,0%), con un buen grado de concordancia (Kappa=0,867; IC95% 0,788 - 0,946), respecto al método referencial. Los VPP y VPN fueron 98,6% (IC95%, 92,7,2%-100,0%) y 88,2% (IC95%, 78,7%-94,4%), respectivamente. Se evidenció una amplificación exitosa por LAMP, y se obtuvieron resultados comparables con el método por columnas de sílice. Conclusión. El método desarrollado es simple, de bajo costo y libre de equipos para la obtención rápida (60 segundos) de ADN en el punto de atención, y puede ser implementado en diversas técnicas moleculares orientados al diagnóstico oportuno y al estudio epidemiológico de tos ferina.


ABSTRACT Objective. To develop and evaluate a low-cost cellulose-based method for rapid purification and direct amplification of Bordetella pertussis DNA from nasopharyngeal swabs. Materials and methods. We prepared cellulose discs and evaluated different parameters (lysis/wash buffers, number of discs and DNA elution). The method was coupled to a direct real-time PCR (qPCR) amplification and the performance was estimated using nasopharyngeal swabs that were positive (n=100) and negative (n=50) for B. pertussis DNA by qPCR, compared to the silica column-based method. We calculated sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) and the degree of agreement. The feasibility of the rapid method to be coupled to a loop-mediated isothermal amplification colorimetric assay (LAMP) was evaluated. Results. The rapid method, with a cellulose disk and lysis and wash buffer containing PVP-40 and Tween 20, respectively, showed a greater capacity to purify amplifiable DNA from B. pertussis. The method had a sensitivity of 89.0% (95%CI: 80.2%-94.9%) and a specificity of 98.5% (95%CI: 92.1%-100.0%), with a good degree of agreement (Kappa=0.867; 95%CI: 0.788 - 0.946), compared to the reference method. The PPV and NPV were 98.6% (95%CI: 92.7.2%-100.0%) and 88.2% (95%CI: 78.7%-94.4%), respectively. Successful amplification by LAMP was evident, and comparable results were obtained with the silica column method. Conclusion. The developed method is simple, low-cost and equipment-free for rapid (60 seconds) DNA collection at the point of care, and can be implemented in various molecular techniques aimed at the timely diagnosis and epidemiological study of pertussis.


Assuntos
Humanos , Bordetella pertussis/genética , DNA Bacteriano/isolamento & purificação , Celulose , Reação em Cadeia da Polimerase em Tempo Real , Coqueluche/diagnóstico , Nasofaringe/microbiologia , Sensibilidade e Especificidade , Técnicas de Diagnóstico Molecular
11.
Microorganisms ; 10(5)2022 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-35630354

RESUMO

A loop-mediated isothermal amplification assay was evaluated as a surrogate marker of treatment failure in Chagas disease (CD). A convenience series of 18 acute or reactivated CD patients who received anti-parasitic treatment with benznidazole was selected-namely, nine orally infected patients: three people living with HIV and CD reactivation, five chronic CD recipients with reactivation after organ transplantation and one seronegative recipient of a kidney and liver transplant from a CD donor. Fifty-four archival samples (venous blood treated with EDTA or guanidinium hydrochloride-EDTA buffer and cerebrospinal fluid) were extracted using a Spin-column manual kit and tested by T. cruzi Loopamp kit (Tc-LAMP, index test) and standardized real-time PCR (qPCR, comparator test). Of them, 23 samples were also extracted using a novel repurposed 3D printer designed for point-of-care DNA extraction (PrintrLab). The agreement between methods was estimated by Cohen's kappa index and Bland-Altman plot analysis. The T. cruzi Loopamp kit was as sensitive as qPCR for detecting parasite DNA in samples with parasite loads higher than 0.5 parasite equivalents/mL and infected with different discrete typing units. The agreement between qPCR and Tc-LAMP (Spin-column) or Tc-LAMP (PrintrLab) was excellent, with a mean difference of 0.02 [CI = -0.58-0.62] and -0.04 [CI = -0.45-0.37] and a Cohen's kappa coefficient of 0.78 [CI = 0.60-0.96] and 0.90 [CI = 0.71 to 1.00], respectively. These findings encourage prospective field studies to validate the use of LAMP as a surrogate marker of treatment failure in CD.

12.
Microorganisms ; 10(3)2022 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-35336172

RESUMO

Trichomonas tenax is a flagellated protozoan that inhabits the human and canine oral cavity in patients with poor oral hygiene and periodontal disease. The loop-mediated isothermal amplification (LAMP) assay could provide clinicians with a quick, cheap and reliable diagnostic test used for the detection of T. tenax in various settings. In this study, we aimed to develop a LAMP assay that can detect T. tenax with high sensitivity and specificity. A set of LAMP primers were specifically designed to detect the ITS and 5.8S rRNA gene of T. tenax. The newly developed LAMP assay was 1000 times more sensitive than conventional PCR. The limit of detection of the LAMP assay was 10 fg of genomic DNA, or 0.2-1 cell. Moreover, the LAMP assay was specific, resulting in no cross-reaction even with a closely related protozoan T. vaginalis or other microorganisms (Streptococcus pyogenes, Staphylococcus aureus, Escherichia coli, Enterococcus faecalis, and Candida albicans) used. The present LAMP assay can be performed directly without prior DNA extraction, making the assay an easy, fast, cheap, specific and sensitive diagnostic tool for the detection of T. tenax at the point-of-care of both medical and veterinary clinics in developed and developing countries.

13.
Braz J Microbiol ; 53(2): 615-623, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35178681

RESUMO

Hepatitis B virus is a highly infectious blood borne microbial pathogen that causes several hepatic complications like liver cirrhosis and hepatocellular carcinoma. Several methods are available for the detection of HBV, but every method has their own merits and demerits, which restrict their use in clinical laboratories. The aim of this present study is the development of rapid, inexpensive, sensitive, and specific loop-mediated isothermal amplification followed by lateral flow device (LFD) for detection of HBV in blood specimens. METHODS: HBV standard plasma panels and donor plasma specimens were used to evaluate the assay. HBV DNA was extracted by using QiAamp DNA Blood Mini Kit. Amplification was carried out at constant temperature 63 °C for 60 min. LAMP end products were analyzed by using ESE LAMP tube scanner, gel electrophoresis, UV-lamp, and lateral flow device. RESULTS: HBV-LAMP-LFD assay revealed sensitivity of 92% (138/150) of HBV positive plasma specimens. Specificity of HBV-LAMP-LFD was calculated 100%. CONCLUSION: Our study concludes that HBV-LAMP-LFD is rapid, easy to use, sensitive, and specific point-of-care diagnostic assay for the detection of hepatitis B virus in blood samples. This assay can be used in resource-limited settings as well as in HBV endemic areas.


Assuntos
Vírus da Hepatite B , Hepatite B , Hepatite B/diagnóstico , Vírus da Hepatite B/genética , Humanos , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico/métodos , Sensibilidade e Especificidade
14.
Mem. Inst. Oswaldo Cruz ; 117: e200444, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1375921

RESUMO

There is no consensus on the diagnostic algorithms for many scenarios of Trypanosoma cruzi infection, which hinders the establishment of governmental guidelines in endemic and non-endemic countries. In the acute phase, parasitological methods are currently employed, and standardised surrogate molecular tests are being introduced to provide higher sensitivity and less operator-dependence. In the chronic phase, IgG-based serological assays are currently used, but if a single assay does not reach the required accuracy, PAHO/WHO recommends at least two immunological tests with different technical principles. Specific algorithms are applied to diagnose congenital infection, screen blood and organ donors or conduct epidemiological surveys. Detecting Chagas disease reactivation in immunosuppressed individuals is an area of increasing interest. Due to its neglect, enhancing access to diagnosis of patients at risk of suffering T. cruzi infection should be a priority at national and regional levels.

15.
Front Vet Sci ; 8: 770508, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869740

RESUMO

Ancylostoma caninum is a zoonotic nematode which is able to affect animals and humans. Diagnosis in the definitive host and environmental detection are key to prevent its dissemination and achieve control. Herein, a new coprological LAMP method for the detection of A. caninum (Copro-LAMPAc) DNA was developed. DNA extraction was performed using a low-cost method and a fragment of the cox-1 gene was used for primer design. The analytical sensitivity, evaluated with serial dilutions of genomic DNA from A. caninum adult worms, was 100 fg. A specificity of 100% was obtained using genomic DNA from the host and other pathogens. The Copro-LAMPAc was evaluated using environmental canine fecal samples. When compared with gold standard optical microscopy in epidemiological studies, it proved to be more sensitive. This new LAMP assay can provide an alternative protocol for screening and identification of A. caninum for epidemiological studies in endemic areas.

16.
J Infect Dev Ctries ; 15(8): 1167-1172, 2021 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-34516425

RESUMO

INTRODUCTION: Acetic acid (AA) has been commonly used in medicine as an antiseptic agent for the past 6000 years. This study evaluated the antibacterial effect of AA during an outbreak in an intensive care unit (ICU) facility in Baja California Sur, México. METHODOLOGY: Thirty-five environmental samples were collected, subsequently, disinfection with AA (4%) was performed, and two days later the same areas were sampled inside the ICU facility. Carbapenem-resistant A. baumannii (CRAB) was detected with loop-mediated isothermal amplification assay (Garciglia-Mercado et al. companion paper), targeting blaOXA-23-like, blaOXA-24-like, blaOXA-51-like, blaOXA-58-like, blaIMP and blaVIM genes. CRAB isolates before and after disinfection were compared by PFGE. RESULTS: Eighteen (54.5%) and five (14.3%) of thirty-five environmental samples were identified as Acinetobacter baumannii before and after disinfection, respectively, showing a significant decrease of 85.7% (p < 0.05) both by Loop-mediated isothermal amplification (LAMP) and polymerase chain reaction (PCR). Furthermore, the presence of blaOXA-23-like and blaOXA-58-like genes significantly decreased (p < 0.05) both by LAMP and PCR methods. PFGE genotype showed high similarity among CRAB isolates before and after disinfection, suggesting wide clonal dissemination in the ICU facility. CONCLUSIONS: This study demonstrated the novel application of AA with the LAMP assays developed for detecting CRAB. AA promises to be a cheap and efficacious disinfectant alternative to both developed and especially developing countries, preventing the spread of this organism in the environment and to other susceptible patients in health care settings.


Assuntos
Ácido Acético/uso terapêutico , Infecções por Acinetobacter/microbiologia , Antibacterianos/uso terapêutico , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Ácido Acético/farmacologia , Acinetobacter baumannii/isolamento & purificação , Antibacterianos/farmacologia , Humanos , Unidades de Terapia Intensiva , México , Testes de Sensibilidade Microbiana , Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico
17.
Diagnostics (Basel) ; 11(8)2021 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-34441334

RESUMO

Rapid diagnostics is pivotal to curb SARS-CoV-2 transmission, and saliva has emerged as a practical alternative to naso/oropharyngeal (NOP) specimens. We aimed to develop a direct RT-LAMP (reverse transcription loop-mediated isothermal amplification) workflow for viral detection in saliva, and to provide more information regarding its potential in curbing COVID-19 transmission. Clinical and contrived specimens were used to optimize formulations and sample processing protocols. Salivary viral load was determined in symptomatic patients to evaluate the clinical performance of the test and to characterize saliva based on age, gender and time from onset of symptoms. Our workflow achieved an overall sensitivity of 77.2% (n = 90), with 93.2% sensitivity, 97% specificity, and 0.895 Kappa for specimens containing >102 copies/µL (n = 77). Further analyses in saliva showed that viral load peaks in the first days of symptoms and decreases afterwards, and that viral load is ~10 times lower in females compared to males, and declines following symptom onset. NOP RT-PCR data did not yield relevant associations. This work suggests that saliva reflects the transmission dynamics better than NOP specimens, and reveals gender differences that may reflect higher transmission by males. This saliva RT-LAMP workflow can be applied to track viral spread and, to maximize detection, testing should be performed immediately after symptoms are presented, especially in females.

18.
Braz J Microbiol ; 52(4): 1725-1732, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34241828

RESUMO

Porcine parvovirus (PPV) infection is one of the most important causes of reproductive failure in pigs impacting the piggery industry globally with huge economic losses. A cost-effective, simple, rapid, specific, and sensitive method is critical for monitoring PPV infection on pig farms. The main aim of the present study was to develop and evaluate a loop-mediated isothermal amplification (LAMP) assay for rapid visual detection of porcine parvovirus (PPV) in pigs. A set of six LAMP primers including two outer primers, two inner primers, and two loop primers were designed utilizing the conserved region of capsid protein VP2 gene sequences of PPV and was applied for detection of PPV from porcine samples. Time and temperature conditions for amplification of PPV genes were optimized to be 30 min at 63 °C. The developed assay was ten-fold more sensitive than conventional PCR with analytical sensitivity of 20 pg and 200 pg, respectively. This is the first report of detection of PPV by LAMP assay from India. The assay did not cross-react with porcine circovirus type 2 (PCV2), porcine reproductive and respiratory syndrome virus (PRRSV), or classical swine fever virus (CSFV). The LAMP assay was assembled into a LAMP assay kit of 20 reactions and was validated in different laboratories in India. The newly developed LAMP assay was proved to be a specific, sensitive, rapid, and simple method for visual detection of PPV which does not require even costly equipments for performing the test. It complements and extends previous methods for PPV detection and provides an alternative approach for detection of PPV.


Assuntos
Técnicas de Diagnóstico Molecular , Técnicas de Amplificação de Ácido Nucleico , Infecções por Parvoviridae , Parvovirus Suíno , Doenças dos Suínos , Animais , Infecções por Parvoviridae/diagnóstico , Infecções por Parvoviridae/veterinária , Parvovirus Suíno/genética , Sensibilidade e Especificidade , Suínos , Doenças dos Suínos/diagnóstico
19.
Braz J Microbiol ; 52(3): 1315-1325, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34176103

RESUMO

Tuberculosis (TB) is the deadliest infectious caused by Mycobacterium tuberculosis complex (MTBC). Because most TB cases occur within low-income populations, developing a specific, sensitive, cost-saving, and rapid point-of-care test for the early diagnosis of TB is important for achieving the WHO's End Tuberculosis Strategy. In the current study, a novel nucleic acid detection strategy that includes multiplex loop-mediated isothermal amplification combined with a nanoparticle-based lateral flow biosensor (mLAMP-LFB) was used to detect MTBC. The two sets of LAMP primers specific to the IS6110 and gyrB genes of MTBC were successfully designed and validated for the detection of MTBC. The preferred reaction conditions for this assay were confirmed to be 65 °C for 40 min, and the amplification products could be visually identified through LFB within 2 min. The full assay process, including genomic DNA template extraction, LAMP reaction, and product detection, could be completed in 80 min. The limit detection of the assay was 100 fg of DNA in pure culture. The specificity of the assay was 100%, and it had no cross-reactions to other strains. Thus, the m-LAMP-LFB technology established in the present study was an objective, rapid, simple, and sensitive assay for MTBC identification, which could be applied in a clinical setting, especially in resource-constrained regions of the world.


Assuntos
Técnicas Biossensoriais , Técnicas de Diagnóstico Molecular , Mycobacterium tuberculosis , Técnicas de Amplificação de Ácido Nucleico , Tuberculose , Humanos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/isolamento & purificação , Nanopartículas , Sensibilidade e Especificidade , Tuberculose/diagnóstico
20.
Parasitology ; 148(7): 819-826, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33593468

RESUMO

Toxocariasis is a zoonotic disease caused mainly by Toxocara canis and Toxocara cati and diagnosis in dogs and cats is an important tool for its control. For this reason, a new coprological loop-mediated isothermal amplification (LAMP) assay was developed for the simultaneous detection of these species. The primer set was designed on a region of the mitochondrial cox-1 gene. Amplification conditions were evaluated using a temperature gradient (52°C to 68°C), different incubation times (15­120 min), and different concentrations of malachite green dye (0.004­0.4% w/v). The analytical sensitivity was evaluated with serial dilutions of genomic DNA from T. canis and T. cati adult worms, and with serial dilutions of DNA extracted from feces using a low-cost in-house method. The specificity was evaluated using genomic DNA from Canis lupus familiaris, Felis catus, Escherichia coli, Toxascaris leonina, Ancylostoma caninum, Echinococcus granulosus sensu stricto and Taenia hydatigena. The LAMP assay applied to environmental fecal samples from an endemic area showed an analytical sensitivity of 10­100 fg of genomic DNA and 10−5 serial dilutions of DNA extracted from feces using the low-cost in-house method; with a specificity of 100%. Additionally, the total development of the assay was carried out in a basic laboratory and per-reaction reagent cost decreased by ~80%. This new, low-cost tool can help identify the most common agents of toxocariasis in endemic areas in order to manage prevention strategies without having to rely on a laboratory with sophisticated equipment.


Assuntos
Doenças do Gato/diagnóstico , Doenças do Cão/diagnóstico , Técnicas de Diagnóstico Molecular/veterinária , Técnicas de Amplificação de Ácido Nucleico/veterinária , Toxocara/isolamento & purificação , Toxocaríase/diagnóstico , Animais , Doenças do Gato/parasitologia , Gatos , Doenças do Cão/parasitologia , Cães , Fezes/parasitologia , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Toxocara canis/isolamento & purificação , Toxocaríase/parasitologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA