Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
J Phys Condens Matter ; 36(37)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38857602

RESUMO

The study of discotic liquid crystals (DLCs) under spherical confinement has gained considerable significance due to its relevance in the design and optimization of advanced materials with tailored properties. The unique characteristics of DLC fluids, coupled with confinement within a spherical Janus surface, offer a compelling avenue for exploring novel behaviors and emergent phenomena. In this study, Monte Carlo simulations within the NpT ensemble are employed to investigate the behavior of a DLC fluid confined by a spherical Janus surface. The Janus surface is characterized by distinct hemispheres, with one promoting homeotropic (face-on) anchoring and the other planar (edge-on) anchoring. Our analysis reveals the emergence of two topological defects: one exclusively on the edge-anchoring hemisphere and the other at the boundary of both anchorings. Each topological defect possessing a topological charge ofk= +1/2. We observe that as the temperature transitions the central region of the droplet into a nematic phase, a disclination line forms, linking the two surface defects. By investigating droplets of three different sizes, we confirm that the isotropic-nematic transition is first-order for the larger droplet studied. However, this transition becomes continuous under strong confinement conditions. In contrast, the nematic-columnar transition remains first order even for smaller systems.

2.
ACS Appl Mater Interfaces ; 16(11): 14144-14151, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38448425

RESUMO

Sticky-colored labels are an efficient way to communicate visual information. However, most labels are static. Here, we propose a new category of dynamic sticky labels that change structural colors when stretched. The sticky mechanochromic labels can be pasted on flexible surfaces such as fabric and rubber or even on brittle materials. To enhance their applicability, we demonstrate a simple method for imprinting structural color patterns that are either always visible or reversibly revealed or concealed upon mechanical deformation. The mechanochromic patterns are imprinted with a photomask during the ultraviolet (UV) cross-linking of acrylate-terminated cholesteric liquid crystal oligomers in a single step at room temperature. The photomask locally controls the cross-linking degree and volumetric response of the cholesteric liquid crystal elastomers (CLCEs). A nonuniform thickness change induced by the Poisson's ratio contrast between the pattern and the surrounding background might lead to a color-separation effect. Our sticky multicolor mechanochromic labels may be utilized in stress-strain sensing, building environments, smart clothing, security labels, and decoration.

3.
Beilstein J Org Chem ; 19: 1755-1765, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025088

RESUMO

Electron and hole transport characteristics were evaluated for perylene-based and pyrene-based compounds using electron-only and hole-only devices. The perylene presented a columnar hexagonal liquid crystal phase at room temperature with strong molecular π-stacking inside the columns. The pyrene crystallizes bellow 166 °C, preserving the close-packed columnar rectangular structure of the mesophase. Photophysical analysis and numerical calculations assisted the interpretation of positive and negative charge carrier mobilities obtained from fitting the space charge limited regime of current vs voltage curves. The pyrene-based material demonstrated an electron mobility two orders of magnitude higher than the perylene one, indicating the potential of this class of materials as electron transporting layer.

4.
Chemistry ; 29(46): e202301319, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37272583

RESUMO

Columnar liquid crystals with very small molecular masses that form anisotropic glasses well above room temperature are obtained by mixed dissymmetric substitution of sym-triazine with ester-bearing phenyl and phenanthryl or tetrahelicenyl moieties. The combination of low molecular symmetry with configurational flexibility and short polar ester moieties stabilizes the mesophase over large temperature ranges and induces pronounced calorimetric glass transitions within the anisotropic fluid despite the smallness of the molecules. In contrast to more symmetrical homologs, no ester tails longer than ethyl are necessary to induce the liquid crystalline state, allowing for the near-absence of any insulating and weight-increasing alkyl periphery. Films drop-cast from solution show in all cases emission spectra that do not show significant change of fluorescence emission upon annealing, indicating that the columnar hexagonal mesoscopic order is obtained directly upon deposition from solution and is resistant to crystallization upon annealing.

5.
Chemistry ; 29(24): e202203604, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36692252

RESUMO

Triply phenanthryl- and tetrahelicenyl-substituted triazine-hexaalkyl esters with short alkyl chains show glass transitions conveniently above room temperature within the hexagonal columnar liquid crystalline state, resulting in a solid columnar order at room temperature. As the hexagonal columnar mesophase is easily aligned with the director perpendicular to a solid substrate, such glassy columnar liquid matrices are aimed at for the orientation of guest emitters, to obtain anisotropic emission. A condition for face-on alignment on substrates are attainable melting and clearing temperatures, which is achieved with the moderately nonplanar tetrahelicenyl derivatives in spite of their short alkyl periphery. An unusual phase transition between two columnar mesophases of same hexagonal symmetry, but very different long-distance regularity of the column lattice, is found in one phenanthryl homolog.

6.
J Biophotonics ; 16(2): e202200040, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36169026

RESUMO

Curcumin has great potential as a photosensitizer, but it has low solubility in aqueous solutions. This study reports the antimicrobial efficacy of photodynamic inactivation (PDI) mediated by a curcumin-loaded liquid crystal precursor (LCP) on in situ dental biofilms. Thirty volunteers used intraoral devices containing enamel samples for 48 hours for biofilm formation. The samples were then removed from the device and treated either with LCP with 160 µM of curcumin plus illumination at 18 J/cm2 (C + L+ group) or with LCP without curcumin in the dark (C - L - group). Following this, the biofilm from the samples was plated for quantifying the viable colonies at 37°C for 48 hours. Specific and nonspecific media were used for the presumptive isolation of Streptococcus mutans, Lactobacillus species/aciduric microorganisms, Candida species, and total microbiota. The C + L+ group showed a highly significant (P < .001) reduction in the log10 (colony forming units/mL) values as compared to the C - L - group for all culture media. Hierarchical linear regression indicated that there may be predictors at individual volunteer level explaining the difference in the PDI efficacy among different individuals (P = .001). The LCP system retained curcumin and released it slowly and continuously, thus protecting the drug from photodegradation. LCP with curcumin is considered effective for the photoinactivation of dental biofilms, but the PDI efficacy may differ based on the host's individual characteristics.


Assuntos
Curcumina , Cristais Líquidos , Fotoquimioterapia , Humanos , Curcumina/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Biofilmes
7.
Biosensors (Basel) ; 12(12)2022 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-36551080

RESUMO

According to the World Health Organization (WHO), cardiovascular diseases (CVDs) are the leading cause of mortality and morbidity worldwide. The development of electrochemical biosensors for CVD markers detection, such as cardiac troponin I (cTnI), becomes an important diagnostic strategy. Thus, a glassy carbon electrode (GCE) was modified with columnar liquid crystal (LCcol) and gold nanoparticles stabilized in polyallylamine hydrochloride (AuNPs-PAH), and the surface was employed to evaluate the interaction of the cTnI antibody (anti-cTnI) and cTnI for detection in blood plasma. Morphological and electrochemical investigations were used in the characterization and optimization of the materials used in the construction of the immunosensor. The specific interaction of cTnI with the surface of the immunosensor containing anti-cTnI was monitored indirectly using a redox probe. The formation of the immunocomplex caused the suppression of the analytical signal, which was observed due to the insulating characteristics of the protein. The cTnI-immunosensor interaction showed linear responses from 0.01 to 0.3 ng mL-1 and a low limit of detection (LOD) of 0.005 ng mL-1 for linear sweep voltammetry (LSV) and 0.01 ng mL-1 for electrochemical impedance spectroscopy (EIS), showing good diagnostic capacity for point-of-care applications.


Assuntos
Técnicas Biossensoriais , Cristais Líquidos , Nanopartículas Metálicas , Ouro/química , Troponina I , Nanopartículas Metálicas/química , Técnicas Eletroquímicas/métodos , Técnicas Biossensoriais/métodos , Imunoensaio/métodos , Limite de Detecção
8.
Foods ; 11(22)2022 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-36429220

RESUMO

Literature reports that ingestion of phytosterols and γ-oryzanol contributes to cholesterol lowering. Despite in vivo observations, thermodynamic phase equilibria could explain phenomena occurring during digestion leading to such effects. To advance the observations made by previous literature, this study was aimed at describing the complete solid-liquid phase equilibrium diagrams of cholesterol + phytosterol and γ-oryzanol systems by DSC, evaluating them by powder X-ray, microscopy, and thermodynamic modeling. Additionally, this study evaluated the phenomena observed by an in vitro digestibility method. Results confirmed the formation of solid solution in the cholesterol + phytosterols system at any concentration and that cholesterol + γ-oryzanol mixtures formed stable liquid crystalline phases with a significant melting temperature depression. The in vitro protocol supported the idea that the same phenomena can occur during digestion in which mechanochemical forces were probably the mechanisms promoting cholesterol solid phase changes in the presence of such phytocompounds. In this case, these changes could alter cholesterol solubility and possibly its absorption in the gastrointestinal lumen.

9.
Int J Pharm ; 628: 122299, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36265664

RESUMO

Since the late 20th century, we have witnessed a growing and substantial advance in nanomedicine, in part due to the development of multifunctional and multimodal nanoplatforms that have enabled improved efficacy, biocompatibility, and novel therapeutic applications. Non-lamellar liquid-crystalline nanoparticles, especially, reverse hexagonal and cubic bicontinuous mesophases, have gained the attention of the scientific-academic community due to their intriguing and functional characteristics, such as self-organization into two- and three-dimensional supramolecular structures, high symmetry, and ability to accommodate hydrophobic and hydrophilic small molecules, peptides, proteins, nucleic acids, and imaging agents. Furthermore, these particles can be easily modified with specific and/or bioresponsive molecules allowing targeting and improved therapeutic performance. In this contribution we provide an overview of advances in the design and architecture of LCNPs, strategies to overcome biological barriers and main findings about interactions with different types of interfaces. We highlight recent applications in topical, oral, pulmonary and intravenous drug delivery in preclinical in vivo studies. We discussed the current scenario and translational obstacles faced for clinical translation, as well as our perspectives.


Assuntos
Cristais Líquidos , Nanopartículas , Ácidos Nucleicos , Cristais Líquidos/química , Nanopartículas/química , Peptídeos , Terapias em Estudo
10.
Life (Basel) ; 12(8)2022 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-36013317

RESUMO

Since 1966, rifampicin (RIF) has been considered one of the most potent drugs in the treatment of tuberculosis (TB), which is caused by infection with M. tuberculosis (Mtb). New nanostructured formulations for RIF delivery and alternative routes of administration have been studied as potential forms of treatment. This study evaluates a liquid crystal system for RIF delivery, using alternative drug delivery routes. The systems developed are composed of surfactant, oleylamine, and soy phosphatidylcholine. With the aid of polarized light microscopy, it was possible to determine that the developed systems had a hexagonal mesophase. All systems developed showed non-Newtonian pseudoplasticity and a high degree of thixotropy. Liquid crystal systems with RIF showed an increase in elastic potential, indicating greater mu-coadhesiveness. The evaluation of mucoadhesive forces revealed an increase in the mucoadhesive potential in the presence of mucus, indicating the presence of satisfactory mucoadhesive forces. The 9DR and 10DR liquid crystal systems, when submitted to Differential Scanning Calorimetry analysis, remained structured even at temperatures above 100 °C, showing excellent stability. The developed liquid crystal systems showed a tolerable degree of cytotoxicity and bactericidal potential, for example, the 9DR system demonstrated a reduction in bacterial load after the third day and reached zero CFU on the seventh day of the test. The developed systems were also evaluated in the preclinical model of Mtb-infected mice, using the nasal, sublingual, and cutaneous route for the delivery of RIF associated with a nanostructured liquid crystal system as a possible tool in the treatment of TB.

11.
J Phys Condens Matter ; 34(4)2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34695813

RESUMO

We develop a rigorous, field-theoretical approach to the study of spontaneous emission in inertial and dissipative nematic liquid crystals (LCs), disclosing an alternative application of the massive Stückelberg gauge theory to describe critical phenomena in these systems. This approach allows one not only to unveil the role of phase transitions in the spontaneous emission in LCs but also to make quantitative predictions for quantum emission in realistic nematics of current scientific and technological interest in the field of metamaterials. Specifically, we predict that one can switch on and off quantum emission in LCs by varying the temperature in the vicinities of the crystalline-to-nematic phase transition, for both the inertial and dissipative cases. We also predict from first principles the value of the critical exponent that characterizes such a transition, which we show not only to be independent of the inertial or dissipative dynamics, but also to be in good agreement with experiments. We determine the orientation of the dipole moment of the emitter relative to the nematic director that inhibits spontaneous emission, paving the way to achieve directionality of the emitted radiation, a result that could be applied in tuneable photonic devices such as metasurfaces and tuneable light sources.

12.
Front Bioeng Biotechnol ; 9: 617328, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33859978

RESUMO

Photonic materials featuring simultaneous iridescence and light emission are an attractive alternative for designing novel optical devices. The luminescence study of a new optical material that integrates light emission and iridescence through liquid crystal self-assembly of cellulose nanocrystal-template silica approach is herein presented. These materials containing Rhodamine 6G were obtained as freestanding composite films with a chiral nematic organization. The scanning electron microscopy confirms that the cellulose nanocrystal film structure comprises multi-domain Bragg reflectors and the optical properties of these films can be tuned through changes in the relative content of silica/cellulose nanocrystals. Moreover, the incorporation of the light-emitting compound allows a complementary control of the optical properties. Overall, such findings demonstrated that the photonic structure plays the role of direction-dependent inner-filter, causing selective suppression of the light emitted with angle-dependent detection.

13.
Pharmaceutics ; 12(10)2020 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003322

RESUMO

This study assesses the efficacy of different nanoemulsion formulations as new and innovative adjuvants for improving the in vivo immunization against the Tityus serrulatus scorpion venom. Nanoemulsions were designed testing key-variables such as surfactants, co-solvents, and the influence of the temperature, which would be able to induce the phase transition from a liquid crystal to a stable nanoemulsion, assessed for four months. Additionally, cationic-covered nanoemulsion with hyper-branched poly(ethyleneimine) was prepared and its performance was compared to the non-cationic ones. The physicochemical properties of the selected nanoemulsions and the interactions among their involved formulation compounds were carefully monitored. The cytotoxicity studies in murine macrophages (RAW 264.7) and red blood cells were used to compare different formulations. Moreover, the performance of the nanoemulsion systems as biocompatible adjuvants was evaluated using mice immunization protocol. The FTIR shifts and the zeta potential changes (from -18.3 ± 1.0 to + 8.4 ± 1.4) corroborated with the expected supramolecular anchoring of venom proteins on the surface of the nanoemulsion droplets. Cell culture assays demonstrated the non-toxicity of the formulations at concentrations less than 1.0 mg/mL, which were able to inhibit the hemolytic effect of the scorpion venom. The cationic-covered nanoemulsion has shown superior adjuvant activity, revealing the highest IgG titer in the immunized animals compared to both the non-cationic counterpart and the traditional aluminum adjuvant. In this approach, we demonstrate the incredible potential application of nanoemulsions as adjuvants, using a nanotechnology platform for antigen delivery system on immune cells. Additionally, the functionalization with hyper-branched poly(ethyleneimine) enhances this recognition and improves its action in immunization.

14.
Expert Opin Drug Deliv ; 17(12): 1781-1805, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32886531

RESUMO

INTRODUCTION: Lyotropic liquid crystals (LLCs) are organized mesophases with intermediate properties between liquids and solids. The LLC and its liquid crystalline nanoparticles (LCNPs) have attracted great interest from the scientific community in recent years as potential drug delivery systems due to the high internal ordering and symmetry with a wide interfacial area. AREAS COVERED: This article aims to gather information and to provide a description of the highly organized structures of LLCs. Updates on production methods and new insights for LCNPs optimization and physico-chemical and morphological caracterization techniques were discussed. We also discussed why these systems proved to be a platform for the design of nanocarrier drug delivery, with an emphasis on topical and transdermal applications. EXPERT OPINION: Drug delivery platforms are of particular importance to improve the biopharmaceutical aspects of therapies topically. Although several systems can be used, LLC or LCNPs appear to be favored due to their similarity to the lipid structure of the skin. The highly ordered structure and the possibility of chemical modifications make it possible to obtain better clinical responses. The results of several studies support the innovations in this field and predict that these systems can innovate the market of technologies for the treatment of cutaneous diseases and cosmetology.


Assuntos
Sistemas de Liberação de Medicamentos , Cristais Líquidos/química , Nanopartículas , Administração Cutânea , Animais , Humanos , Preparações Farmacêuticas/administração & dosagem , Pele/metabolismo , Dermatopatias/tratamento farmacológico
15.
Beilstein J Org Chem ; 16: 175-184, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32117474

RESUMO

A series of novel thiourea and amide liquid crystals containing 5-membered isoxazoline and isoxazole rings were synthetized and the liquid crystal properties studied. Thioureas were obtained using a condensation reaction of benzoyl chlorides, arylamines and ammonium thiocyanate. The amides, on the other hand, were the byproduct of a quantitative reaction which used potassium cyanate as the starting material. Thiourea and amide derivatives were predominantly SmA mesophase inductors. A nematic mesophase was observed only for thioureas and amides containing an isoxazole ring. Additionaly, the liquid crystal behavior was also dependent on the relative position of nitrogen and oxygen atoms on the 5-membered heterocycle.

16.
Pharmaceutics, v. 12, n. 10, 927, set. 2020
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-3265

RESUMO

This study assesses the efficacy of different nanoemulsion formulations as new and innovative adjuvants for improving the in vivo immunization against the Tityus serrulatus scorpion venom. Nanoemulsions were designed testing key-variables such as surfactants, co-solvents, and the influence of the temperature, which would be able to induce the phase transition from a liquid crystal to a stable nanoemulsion, assessed for four months. Additionally, cationic-covered nanoemulsion with hyper-branched poly(ethyleneimine) was prepared and its performance was compared to the non-cationic ones. The physicochemical properties of the selected nanoemulsions and the interactions among their involved formulation compounds were carefully monitored. The cytotoxicity studies in murine macrophages (RAW 264.7) and red blood cells were used to compare different formulations. Moreover, the performance of the nanoemulsion systems as biocompatible adjuvants was evaluated using mice immunization protocol. The FTIR shifts and the zeta potential changes (from −18.3 ± 1.0 to + 8.4 ± 1.4) corroborated with the expected supramolecular anchoring of venom proteins on the surface of the nanoemulsion droplets. Cell culture assays demonstrated the non-toxicity of the formulations at concentrations less than 1.0 mg/mL, which were able to inhibit the hemolytic effect of the scorpion venom. The cationic-covered nanoemulsion has shown superior adjuvant activity, revealing the highest IgG titer in the immunized animals compared to both the non-cationic counterpart and the traditional aluminum adjuvant. In this approach, we demonstrate the incredible potential application of nanoemulsions as adjuvants, using a nanotechnology platform for antigen delivery system on immune cells. Additionally, the functionalization with hyper-branched poly(ethyleneimine) enhances this recognition and improves its action in immunization

17.
Colloids Surf B Biointerfaces ; 177: 204-210, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-30743067

RESUMO

Dispersed systems of bicontinuous cubic phases, called cubosomes, show a drug release rate faster than those obtained using other liquid-crystalline phases. To minimize side effects associated with the accelerated release of incorporated drugs, compounds may be added in the dispersions to produce systems of slow initial release and then fast release only in the desired action region. This paper addresses the addition of 10.0% (w/w) of decyl betainate chloride (DBC), a cleavable surfactant, into phytantriol/Pluronic-based dispersions to generate lamellar-to-cubic-to-hexagonal phase transitions. Small-angle X-ray scattering (SAXS) was used to analyze the mesophases obtained with the addition of DBC and pH variation. Transmission electron microscopy (TEM) images confirmed the presence of niosomes after the addition of DBC. The niosomes formed in these systems are pH-responsive with lamellar-to-hexosomes transitions at pH ≥ 7.4. The system investigated herein is gastro-resistant presenting potential therapeutic role for controlled release of drugs in neutral or alkaline environments of the organism.


Assuntos
Álcoois Graxos/química , Nanopartículas/química , Concentração de Íons de Hidrogênio , Estrutura Molecular , Tamanho da Partícula , Transição de Fase , Propriedades de Superfície , Tensoativos/química
18.
Food Control ; 89: 72-76, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29503510

RESUMO

As consumption of fish and fish-based foods increases, non-destructive monitoring of fish freshness also becomes more prominent. Fish products are very perishable and prone to microbiological growth, not always easily detected by organoleptic evaluation. The analysis of the headspace of fish specimens through gas sensing is an interesting approach to monitor fish freshness. Here we report a gas sensing method for monitoring Tilapia fish spoilage based on the application of a single gas sensitive gel material coupled to an optical electronic nose. The optical signals of the sensor and the extent of bacterial growth were followed over time, and results indicated good correlation between the two determinations, which suggests the potential application of this simple and low cost system for Tilapia fish freshness monitoring.

19.
Int J Nanomedicine ; 13: 31-41, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29296084

RESUMO

Formation of a dental biofilm by Streptococcus mutans can cause dental caries, and remains a costly health problem worldwide. Recently, there has been a growing interest in the use of peptidic drugs, such as peptide p1025, analogous to the fragments 1025-1044 of S. mutans cellular adhesin, responsible for the adhesion and formation of dental biofilm. However, peptides have physicochemical characteristics that may affect their biological action, limiting their clinical performance. Therefore, drug-delivery systems, such as a bioadhesive liquid-crystalline system (LCS), may be attractive strategies for peptide delivery. Potentiation of the action of LCS can be achieved with the use of bioadhesive polymers to prolong their residence on the teeth. In line with this, three formulations - polyoxypropylene-(5)-polyoxyethylene-(20)-cetyl alcohol, oleic acid, and Carbopol C974P in different combinations (F1C, F2C, and F3C) were developed to observe the influence of water in the LCS, with the aim of achieving in situ gelling in the oral environment. These formulations were assessed by polarized light microscopy, small-angle X-ray scattering, rheological analysis, and in vitro bioadhesion analysis. Then, p1025 and a control (chlorhexidine) were incorporated into the aqueous phase of the formulation (F + p1025 and F + chlorhexidine), to determine their antibiofilm effect and toxicity on epithelial cells. Polarized light microscopy and small-angle X-ray scattering showed that F1C and F2C were LCS, whereas F3C was a microemulsion. F1C and F2C showed pseudoplastic behavior and F3C Newtonian behavior. F1C showed the highest elastic and bioadhesive characteristics compared to other formulations. Antibiofilm effects were observed for F + p1025 when applied in the surface-bound salivary phase. The p1025-loaded nanostructured LCS presented limited cytotoxicity and effectively reduced S. mutans biofilm formation, and could be a promising p1025-delivery strategy to prevent the formation of S. mutans dental biofilm.


Assuntos
Proteínas de Bactérias/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Cristais Líquidos/química , Streptococcus mutans/efeitos dos fármacos , Animais , Proteínas de Bactérias/administração & dosagem , Biofilmes/efeitos dos fármacos , Bovinos , Cárie Dentária/prevenção & controle , Avaliação Pré-Clínica de Medicamentos/métodos , Emulsões/química , Álcoois Graxos/química , Humanos , Nanoestruturas/administração & dosagem , Nanoestruturas/química , Poloxaleno/química , Reologia , Espalhamento a Baixo Ângulo , Streptococcus mutans/patogenicidade
20.
Arq. bras. oftalmol ; Arq. bras. oftalmol;80(4): 268-272, July-Aug. 2017. tab, graf
Artigo em Inglês | LILACS | ID: biblio-888124

RESUMO

ABSTRACT Various approaches have been taken to improve our knowledge of the microenvironmental regulation of limbal epithelial stem cells. Researchers have extensively investigated the roles of growth factors, survival factors, cytokines, enzymes, and permeable molecules secreted by the limbal cells. However, recent evidence suggests that stem cell fate (i.e., self-renewal or differentiation) can also be influenced by biophysical and mechanical cues related to the supramolecular organization and the liquid crystalline (mesophase) nature of the stromal extracellular matrix. These cues can be sensed by stem cells and transduced into intracellular biochemical and functional responses, a process known as mechanotransduction. The objective of this review is to offer perspectives on the supramolecular microenvironmental regulation of limbal epithelial stem cells and the differentiation of their progeny.


RESUMO Muitas abordagens têm sido utilizadas para ampliar entendimentos sobre a regulação microambiental das células tronco epiteliais limbais. Neste contexto, pesquisadores têm exaustivamente investigado a participação de fatores de crescimento, fatores de sobrevida, citocinas, enzimas e moléculas permeáveis secretadas pelas células limbais. Entretanto, evidências recentes sugerem que o destino (ie. autorrenovação ou recrutamento para a via de diferenciação) das células tronco também sofre influência de estímulos biofísicos ou mecânicos relacionados à organização supramolecular e à natureza liquido-cristalina (mesofases) da matriz extracelular estromal. Esses estímulos podem ser percebidos e traduzidos pelas células tronco em sinais bioquímicos que geram respostas funcionais, através de um processo designado de mecanotransdução. Objetiva-se, com a presente revisão, oferecer ao leitor perspectivas supramoleculares sobre a regulação microambiental das células tronco epiteliais limbais e a diferenciação de sua progênie.


Assuntos
Humanos , Células-Tronco/fisiologia , Diferenciação Celular/fisiologia , Limbo da Córnea/citologia , Epitélio Corneano/citologia , Mecanotransdução Celular/fisiologia , Matriz Extracelular/fisiologia , Epitélio Corneano/fisiologia , Nicho de Células-Tronco/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA