Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Chem ; 10: 889083, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35720996

RESUMO

Cancer is one of the diseases with the highest mortality rate. Treatments to mitigate cancer are usually so intense and invasive that they weaken the patient to cure as dangerous as the own disease. From some time ago until today, to reduce resistance generated by the constant administration of the drug and improve its pharmacokinetics, scientists have been developing drug delivery system (DDS) technology. DDS platforms aim to maximize the drugs' effectiveness by directing them to reach the affected area by the disease and, therefore, reduce the potential side effects. Erythrocytes, antibodies, and nanoparticles have been used as carriers. Eleven antibody-drug conjugates (ADCs) involving covalent linkage has been commercialized as a promising cancer treatment in the last years. This review describes the general features and applications of DDS focused on the covalent conjugation system that binds the antibody carrier to the cytotoxic drug.

2.
Adv Biochem Eng Biotechnol ; 175: 435-456, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-31907566

RESUMO

Glycan (or carbohydrate) arrays have become an essential tool in glycomics, providing fast and high-throughput data on protein-carbohydrate interactions with small amounts of carbohydrate ligands. The general concepts of glycan arrays have been adopted from other microarray technologies such as those used for nucleic acid and proteins. However, carbohydrates have presented their own challenges, in particular in terms of access to glycan probes, linker attachment chemistries and analysis, which will be reviewed in this chapter. As more and more glycan probes have become available through chemical and enzymatic synthesis and robust linker chemistries have been developed, the applications of glycan arrays have dramatically increased over the past 10 years, which will be illustrated with recent examples.


Assuntos
Glicômica , Polissacarídeos , Ligantes , Análise em Microsséries , Tecnologia
3.
J Pharm Sci ; 109(11): 3262-3281, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32860799

RESUMO

Self-immolative drug delivery system is one of the delivery systems, which have drawn attention, in recent research, highlighting the improvement they generate in drug selectivity and efficacy. Self-immolative linkers, or spacers, are covalent groups, which have the role of cleavaging two bonds between a protector group and a drug, in the case of drug delivery systems, after a stimuli.The cascade of reactions allows to control the release of the drug. The choice of the adequate self-immolative linker is essential and depend on many variables and goals as well. Many approaches can be explored when designing a system adequate for achieving these goals, especially prodrugs. Some of the most used stimuli-responses for self-immolative drugs - enzyme triggers, chemical triggers, as pH, redox system, 1,4-, 1,6-, 1,8-eliminations, photodegradable triggers, multiple triggers, among others - are described in this ten-year review, along with their application as theranostic agents. We intend that the examples presented in this review inspire researchers working on drug delivery systems to further explore their application.


Assuntos
Pró-Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Oxirredução
4.
Protein Sci ; 27(5): 969-975, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29520922

RESUMO

FabA and FabZ are the two dehydratase enzymes in Escherichia coli that catalyze the dehydration of acyl intermediates in the biosynthesis of fatty acids. Both enzymes form obligate dimers in which the active site contains key amino acids from both subunits. While FabA is a soluble protein that has been relatively straightforward to express and to purify from cultured E. coli, FabZ has shown to be mostly insoluble and only partially active. In an effort to increase the solubility and activity of both dehydratases, we made constructs consisting of two identical subunits of FabA or FabZ fused with a naturally occurring peptide linker, so as to force their dimerization. The fused dimer of FabZ (FabZ-FabZ) was expressed as a soluble enzyme with an ninefold higher activity in vitro than the unfused FabZ. This construct exemplifies a strategy for the improvement of enzymes from the fatty acid biosynthesis pathways, many of which function as dimers, catalyzing critical steps for the production of fatty acids.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Ácido Graxo Sintase Tipo II/metabolismo , Hidroliases/metabolismo , Biocatálise , Desidratação , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/isolamento & purificação , Ácido Graxo Sintase Tipo II/química , Ácido Graxo Sintase Tipo II/isolamento & purificação , Ácidos Graxos/biossíntese , Ácidos Graxos/química , Hidroliases/química , Hidroliases/isolamento & purificação , Modelos Moleculares , Multimerização Proteica , Solubilidade
5.
Dent Mater ; 30(2): 227-33, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24332989

RESUMO

OBJECTIVES: To evaluate the effect of EDC on elastic modulus (E), MMPs activity, hydroxyproline (HYP) release and thermal denaturation temperature of demineralized dentin collagen. METHODS: Dentin beams were obtained from human molars and completely demineralized in 10 wt% H3PO4 for 18 h. The initial E and MMP activity were determined with three-point bending and microcolorimetric assay, respectively. Extra demineralized beams were dehydrated and the initial dry mass (DM) was determined. All the beams were distributed into groups (n=10) and treated for 30 s or 60 s with: water, 0.5 M, 1 M or 2 M EDC or 10% glutaraldehyde (GA). After treatment, the new E and MMP activity were redetermined. The beams submitted to DM measurements were storage for 1 week in artificial saliva, after that the mass loss and HYP release were evaluated. The collagen thermal denaturation temperature (TDT) was determined by DSC analysis. Data for E, MMP activity and HYP release were submitted to Wilcoxon and Kruskal-Wallis or Mann-Whitney tests. Mass loss and TDT data were submitted to ANOVA and Tukey tests at the 5% of significance. RESULTS: EDC was able to significantly increase collagen stiffness in 60s. 10% GA groups obtained the highest E values after both 30 and 60s. All cross-linking agents decreased MMP activity and HYP release and increased TDT temperature. Significant differences were identified among EDC groups after 30 or 60 s of cross-linking, 1M or 2M EDC showed the lowest MMP activity. SIGNIFICANCE: Cross-linking agents are capable of preventing dentin collagen degradation. EDC treatment may be clinically useful to increase resin-dentin stability.


Assuntos
Reagentes de Ligações Cruzadas/química , Dentina/química , Varredura Diferencial de Calorimetria , Humanos , Técnicas In Vitro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA