Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Psychol ; 15: 1281082, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38882514

RESUMO

One of the cognitive abilities most affected by substance abuse is decision-making. Behavioral tasks such as the Iowa Gambling Task (IGT) provide a means to measure the learning process involved in decision-making. To comprehend this process, three hypotheses have emerged: (1) participants prioritize gains over losses, (2) they exhibit insensitivity to losses, and (3) the capacity of operational storage or working memory comes into play. A dynamic model was developed to examine these hypotheses, simulating sensitivity to gains and losses. The Linear Operator model served as the learning rule, wherein net gains depend on the ratio of gains to losses, weighted by the sensitivity to both. The study further proposes a comparison between the performance of simulated agents and that of substance abusers (n = 20) and control adults (n = 20). The findings indicate that as the memory factor increases, along with high sensitivity to losses and low sensitivity to gains, agents prefer advantageous alternatives, particularly those with a lower frequency of punishments. Conversely, when sensitivity to gains increases and the memory factor decreases, agents prefer disadvantageous alternatives, especially those that result in larger losses. Human participants confirmed the agents' performance, particularly when contrasting optimal and sub-optimal outcomes. In conclusion, we emphasize the importance of evaluating the parameters of the linear operator model across diverse clinical and community samples.

2.
J Am Stat Assoc ; 118(541): 257-271, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37193511

RESUMO

Graphical modeling of multivariate functional data is becoming increasingly important in a wide variety of applications. The changes of graph structure can often be attributed to external variables, such as the diagnosis status or time, the latter of which gives rise to the problem of dynamic graphical modeling. Most existing methods focus on estimating the graph by aggregating samples, but largely ignore the subject-level heterogeneity due to the external variables. In this article, we introduce a conditional graphical model for multivariate random functions, where we treat the external variables as conditioning set, and allow the graph structure to vary with the external variables. Our method is built on two new linear operators, the conditional precision operator and the conditional partial correlation operator, which extend the precision matrix and the partial correlation matrix to both the conditional and functional settings. We show that their nonzero elements can be used to characterize the conditional graphs, and develop the corresponding estimators. We establish the uniform convergence of the proposed estimators and the consistency of the estimated graph, while allowing the graph size to grow with the sample size, and accommodating both completely and partially observed data. We demonstrate the efficacy of the method through both simulations and a study of brain functional connectivity network.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA