RESUMO
Phlebotomine sand flies are crepuscular and nocturnal small dipteran insects in the family Psychodidae. Several disease agents, including Leishmania parasites, are transmitted to humans and other vertebrate hosts by the bite of an infected female sand fly. As part of leishmaniasis surveillance programs, light traps have been routinely used in sand fly collections. In this context, new trapping devices are always being required to improve vector monitoring. Here, the efficiency of a new suction light trap, named Silva suction trap or SS trap, was field evaluated in collecting sand flies. Two SS traps, one with green (520 nm, 15,000 mcd) and the other with white (wide spectrum, 18,000 mcd) LEDs, and one CDC-type trap were deployed in a rural forested environment. A total of 4686 phlebotomine sand flies were captured. The most frequent species were females of the Ps. Chagasi series (77.8%) followed by males of Ps. wellcomei (11.6%), Nyssomyia whitmani (3.3%), and Bichromomyia flaviscutellata (2.4%). The CDC-type light trap collected 101.9 ± 20.89 sand flies and 14 species, followed by the white-baited SS trap (87.78 ± 16.36, 14), and the green-baited SS trap (70.61 ± 14.75, 15), but there were no statistically significant differences among traps. A discussion on the considerable advantages of the use of SS traps over CDC traps is included. In this study, the Silva suction trap proved to be efficient and can be an alternative to CDC traps for monitoring adult phlebotomine sand fly populations.
Assuntos
Leishmania , Leishmaniose , Phlebotomus , Psychodidae , Humanos , Masculino , Animais , Feminino , SucçãoRESUMO
The synergistic effect of light-emitting diodes (LEDs) and kairomones on the attraction of sand flies to light traps was evaluated. Octenol and lactic acid were used as chemical attractants. Green LEDs and the incandescent lamps were used as light attractants. Five CDC-type light traps with the respective combination of attractants (incandescent lamp, incandescent lamp + chemical attractant, green LED, green LED + chemical attractant, and chemical attractant alone [without light]) were set between 18:00 and 06:00 following a Latin square design. A total of 6,536 sand flies and 16 species were collected. The most frequent species collected was Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera, Psychodidae) accounting for 43.21% of all individuals. Order of success (mean, SD) of lactic acid attractant fly capture was as follows: LED + lactic acid (36.83 ± 4.74), LED alone (34.87 ± 4.61), incandescent lamp + lactic acid (22.80 ± 3.19), incandescent lamp alone (12.67 ± 2.03), and lactic acid (0.46 ± 0.13). Order of success of octenol attractant fly capture was as follows: LED + octenol (37.23 ± 5.61), LED alone (35.77 ± 5.69), incandescent lamp + octenol (18.63 ± 3.28), incandescent lamp alone (14.67 ± 2.86), and octenol alone (1.80 ± 0.65). With exception of lactic acid + incandescent light, chemical synergists played no part in significantly increasing light trap capture of phlebotomine sand flies. However, the use of LEDs, with or without such attractants, provided significantly higher capture compared to the incandescent lamp with or without such chemicals, showing that LEDs are suitable and efficient light sources for surveillance and monitoring of phlebotomine sand flies in Brazil.
Assuntos
Quimiotaxia , Controle de Insetos/métodos , Luz , Odorantes/análise , Fototaxia , Psychodidae/fisiologia , Animais , Brasil , Entomologia/métodos , Feminino , Ácido Láctico/análise , Masculino , Octanóis/análiseRESUMO
In this study the phototactic response of anopheline mosquitoes to different luminous intensity light-emitting diodes (LEDs) was investigated. Centers for Disease Control-type light traps were changed by replacement of the incandescent lamps by 5â¯mm round type green (520â¯nm) and blue (470â¯nm) LEDs of different luminous intensities: green-LED traps with luminous intensities of 10,000, 15,000 and 20,000 millicandela (mcd) and the blue-LED traps with luminous intensities of 4000, 12,000 and 15,000â¯mcd. Our data showed that increasing luminous intensity has an effect on the attraction of anopheline mosquitoes to light traps, highlighting the importance of taking LEDs and light sources of high luminous intensity into account when using light-trap collections in monitoring populations of Anopheles species.
Assuntos
Distribuição Animal , Anopheles , Abrigo para Animais , Incandescência , Iluminação/instrumentação , Animais , Centers for Disease Control and Prevention, U.S. , Mosquitos Vetores , Estados UnidosRESUMO
Adult triatomines occasionally fly into artificially lit premises in Amazonia. This can result in Trypanosoma cruzi transmission to humans either by direct contact or via foodstuff contamination, but the frequency of such behaviour has not been quantified. To address this issue, a light-trap was set 45 m above ground in primary rainforest near Manaus, state of Amazonas, Brazil and operated monthly for three consecutive nights over the course of one year (432 trap-hours). The most commonly caught reduviids were triatomines, including 38 Panstrongylus geniculatus, nine Panstrongylus lignarius, three Panstrongylus rufotuberculatus, five Rhodnius robustus, two Rhodnius pictipes, one Rhodnius amazonicus and 17 Eratyrus mucronatus. Males were collected more frequently than females. The only month without any catches was May. Attraction of most of the known local T. cruzi vectors to artificial light sources is common and year-round in the Amazon rainforest, implying that they may often invade premises built near forest edges and thus become involved in disease transmission. Consequently, effective Chagas disease prevention in Amazonia will require integrating entomological surveillance with the currently used epidemiological surveillance.