Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plant Dis ; 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39352504

RESUMO

The occurrence of 'Candidatus Liberibacter' spp. and 'Ca. Phytoplasma' spp. associated with blotchy mottle symptoms poses challenges to huanglongbing (HLB) diagnosis using molecular techniques. The ability to detect multiple targets simultaneously and specifically is a key aspect met by qPCR. A set of primers and hydrolysis probes useful either in single or multiplex reactions for the detection and quantification of HLB-associated bacteria were developed. Sequences from conserved genes of the ribosomal proteins for Liberibacter and phytoplasma circumvent the lack of specificity and cross-reactivity problems related to 16S rDNA gene amplification, allowing precise and specific detection of HLB-associated bacteria in citrus and in the Liberibacter vector, Diaphorina citri. The triplex reaction exhibited high quality and precision as a robust tool for quantifying 'Ca. L. asiaticus' (CLas), 'Ca. L. americanus' (CLam) and 16SrIX phytoplasma. Triplex qPCR showed consistent results and comparable sensitivity to the RNR test, though Cq values were higher when compared to 16S rDNA qPCR. Detection tests using field samples indicate that the qPCR triplex can identify HLB-associated bacteria in samples with varying levels of symptoms, ranging from typical to asymptomatic. Assessment of field samples from growers indicated more than 78.6% had Cq lower than 35.0, below the cut-off established for qPCR reactions used in this work. qPCR triplex is a safe, specific, and sufficiently sensitive technique for detecting CLas, CLam and 16Sr IX phytoplasma simultaneously, in both citrus and D. citri samples. Its application is of importance in assisting growers in making decisions for HLB management.

2.
Front Plant Sci ; 15: 1410314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39091311

RESUMO

Introduction: Cape gooseberry (Physalis peruviana L.) is a wellconsumed crop in Ecuador, whose fruits are abundant in bioactive molecules. Its rapid post-harvest deterioration and safety limit its market potential. Methodology: To gather baseline data on the prevalence of bacterial taxa among groups, we employed 16S ribosomal RNA (16S rRNA) amplicon gene sequencing to detect changes in the bacterial community structure in cape gooseberry fruits harvested from an organic farm production system (# 270 samples x two ripeness stages), and fruits obtained from an open-air market (#270). Results: This is the first report of bacterial taxa inhabiting cape gooseberry fruits. Shannon's diversity index revealed that the fruits purchased from the market and the unripe stage had the highest level of bacterial diversity (average Shannon indices of 3.3 and 3.1) followed by those collected from the field at the mature ripe stage (2.07). Alpha diversity analysis indicated that there were no significant differences in the number of taxa or evenness within the sample, whereas there was a significant difference in beta diversity between the groups. Rhizobiaceae was the most abundant family in fruits originating from the field regardless of the ripe stage, while Acetobacteraceae, Pseudomonadaceae, Fusobacteriaceae, Bacteroidaceae, and Erwiniaceae were the most abundant families in the market group. At the genus level, Liberibacter was the most abundant phytopathogen in fruits originating from the field, while Gluconobacter was the most abundant in samples collected from the market. The phytopathogen Candidatus_Liberibacter was the most abundant in samples collected from the field, while the fruits purchased from the market stands contained opportunistic enteric pathogens such as Escherichia vulneris, Klebsiella pneumoniae, and K. variicola, their relative abundance varied with the sample. In addition, potential pathogens of animal origin such as Fusobacterium necrophorum, Porphyromonas levii, Helcococcus ovis, and Trueperella pyogenes were found in almost all samples at varying relative abundance. Conclusion: Our study provides basic information on the microbiome of cape gooseberries from agriculture fields to the table along with the detection of several pathogenic microorganisms with possible impact on food safety and public health therefore, strategies for reducing bacterial contamination in both farm and retail markets are compulsory.

3.
Annu Rev Phytopathol ; 62(1): 243-262, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38691871

RESUMO

São Paulo, Brazil, and Florida, USA, were the two major orange production areas in the world until Huanglongbing (HLB) was discovered in São Paulo in 2004 and Florida in 2005. In the absence of resistant citrus varieties, HLB is the most destructive citrus disease known because of the lack of effective tools to reduce spread of the vector, Diaphorina citri (Asian citrus psyllid), and transmission of the associated pathogen, Candidatus Liberibacter asiaticus. In both countries, a three-pronged management approach was recommended and begun: planting only disease-free nursery trees, effective psyllid control, and removal of all symptomatic trees. In Brazil, these management procedures were continued and improved and resulted in relatively little overall loss of production. In contrast, in Florida the citrus industry has been devastated with annual production reduced by approximately 80%. This review compares and contrasts various cultural and pest management strategies that have been used to reduce infection by the pathogen and increase tolerance of HLB in the main orange-growing regions in the world.


Assuntos
Citrus , Hemípteros , Doenças das Plantas , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Florida , Brasil , Citrus/microbiologia , Hemípteros/microbiologia , Hemípteros/fisiologia , Animais , Controle de Insetos , Rhizobiaceae/fisiologia , Insetos Vetores/microbiologia , Insetos Vetores/fisiologia
4.
Plant Dis ; 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37971894

RESUMO

Candidatus Liberibacter spp is the most prevalent microorganism in the citrus plant, associated with Citrus Huanglongbing (HLB), which is transmitted by the psyllid vector. In Colombia, the vector Diaphorina citri Kugayama has been reported in different regions, but "Ca. Liberibacter asiaticus" (CLas) has only been detected in insect vectors, not in citrus host plants. To identify the presence and quantify the pathogen in citrus tissues, we employed a combined strategy that involved three techniques based on polymerase chain reaction (PCR). First, we used endpoint PCR with specific primers for CLas (OI1-OI2c) to confirm the infection. Second, we used qPCR with specific primers CIT295a - CIT298 designed on 16S rDNA gene regions to quantify the pathogen load. Finally, we employed droplet digital PCR (ddPCR) to determine the copy number of the pathogen in citrus tissues using the ß-subunit of ribonucleotide reductase (RNR) gene (nrdB) that is specific to CLas. We identified the presence of CLas in citrus plants for the first time in Colombia and quantified its titer in the plant tissue. We employed ddPCR and qPCR to provide crucial information for the country's disease management, control strategies, and general crop health.

5.
Plants (Basel) ; 12(5)2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36903899

RESUMO

Huanglongbing (HLB) is one of the most destructive diseases threatening citriculture worldwide. This disease has been associated with α-proteobacteria species, namely Candidatus Liberibacter. Due to the unculturable nature of the causal agent, it has been difficult to mitigate the disease, and nowadays a cure is not available. MicroRNAs (miRNAs) are key regulators of gene expression, playing an essential role in abiotic and biotic stress in plants including antibacterial responses. However, knowledge derived from non-model systems including Candidatus Liberibacter asiaticus (CLas)-citrus pathosystem remains largely unknown. In this study, small RNA profiles from Mexican lime (Citrus aurantifolia) plants infected with CLas at asymptomatic and symptomatic stages were generated by sRNA-Seq, and miRNAs were obtained with ShortStack software. A total of 46 miRNAs, including 29 known miRNAs and 17 novel miRNAs, were identified in Mexican lime. Among them, six miRNAs were deregulated in the asymptomatic stage, highlighting the up regulation of two new miRNAs. Meanwhile, eight miRNAs were differentially expressed in the symptomatic stage of the disease. The target genes of miRNAs were related to protein modification, transcription factors, and enzyme-coding genes. Our results provide new insights into miRNA-mediated regulation in C. aurantifolia in response to CLas infection. This information will be useful to understand molecular mechanisms behind the defense and pathogenesis of HLB.

6.
Pest Manag Sci ; 78(6): 2643-2656, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35355409

RESUMO

BACKGROUND: Despite technical improvements in the citrus chain and leadership in orange production achieved in the past decades, premature fruit drop remains a major component of crop loss in São Paulo state citrus belt, the largest sweet orange production area in the world. The present study aimed to determine, during five consecutive seasons, the impact of the diseases and pests on premature fruit drop in the orange belt. RESULTS: Fruit drop due to the main diseases and pests averaged approximately 11.0%, which corresponded to approximately 63% of the annual fruit drop. The average fruit drop rate due to fruit borer and fruit flies combined was 4.0%, Huanglongbing (HLB) 3.3%, black spot 2.6%, leprosis 1.0% and citrus canker 0.3%. The average amount of fruit drop (million 40.8 kg boxes) and value of crop losses (million US$ dollars), in five seasons, were 12.7 and 66.2 for fruit borer/fruit flies, 11.0 and 57.9 for HLB, 8.1 and 42.2 for black spot, 3.1 and 15.6 for leprosis, and 0.9 and 4.9 for citrus canker, respectively. CONCLUSION: Fruit borer and fruit flies (combined), HLB, black spot, leprosis and citrus canker are, in this order, the main diseases and pests in the orange belt of São Paulo state. All of these causes significantly increased the overall fruit drop rate in the evaluated seasons. The results will contribute to the development of the Brazilian citrus industry, while showing to other citrus-growing regions the potential that diseases and pests have to jeopardize production. © 2022 Society of Chemical Industry.


Assuntos
Citrus sinensis , Citrus , Brasil , Frutas , Doenças das Plantas
7.
Front Plant Sci ; 13: 1052680, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36589083

RESUMO

Background: Huanglongbing (HLB, yellow shoot disease) is a highly destructive citrus disease associated with a nonculturable bacterium, "Candidatus Liberibacter asiaticus" (CLas), which is transmitted by Asian citrus psyllid (ACP, Diaphorina citri). In Mexico, HLB was first reported in Tizimin, Yucatán, in 2009 and is now endemic in 351 municipalities of 25 states. Understanding the population diversity of CLas is critical for HLB management. Current CLas diversity research is exclusively based on analysis of the bacterial genome, which composed two regions, chromosome (> 1,000 genes) and prophage (about 40 genes). Methods and results: In this study, 40 CLas-infected ACP samples from 20 states in Mexico were collected. CLas was detected and confirmed by PCR assays. A prophage gene(terL)-based typing system (TTS) divided the Mexican CLas strains into two groups: Term-G including four strains from Yucatán and Chiapas, as well as strain psy62 from Florida, USA, and Term-A included all other 36 Mexican strains, as well as strain AHCA1 from California, USA. CLas diversity was further evaluated to include all chromosomal and prophage genes assisted by using machine learning (ML) tools to resolve multidimensional data handling issues. A Term-G strain (YTMX) and a Term-A strain (BCSMX) were sequenced and analyzed. The two Mexican genome sequences along with the CLas genome sequences available in GenBank were studied. An unsupervised ML was implemented through principal component analysis (PCA) on average nucleotide identities (ANIs) of CLas whole genome sequences; And a supervised ML was implemented through sparse partial least squares discriminant analysis (sPLS-DA) on single nucleotide polymorphisms (SNPs) of coding genes of CLas guided by the TTS. Two CLas Geno-groups, Geno-group 1 that extended Term-A and Geno-group 2 that extended Term-G, were established. Conclusions: This study concluded that: 1) there were at least two different introductions of CLas into Mexico; 2) CLas strains between Mexico and USA are closely related; and 3) The two Geno-groups provide the basis for future CLas subspecies research.

8.
Plants (Basel) ; 10(10)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34685905

RESUMO

Candidatus Liberibacter solanacearum (CaLso) is associated with diseases in tomato crops and transmitted by the tomato psyllid Bactericera cockerelli. A polymeric water-dispersible nanobactericide (PNB) was evaluated against CaLso as a different alternative. PNB is a well-defined polycationic diblock copolymer designed to permeate into the vascular system of plants. Its assessment under greenhouse conditions was carried out with tomato plants previously infected with CaLso. Using a concentration as low as 1.0 mg L-1, a small but significant reduction in the bacterial load was observed by real-time qPCR. Thus, to achieve an ecologically friendly dosage and set an optimum treatment protocol, we performed experiments to determine the effective concentration of PNB to reduce ~65% of the initial bacterial load. In a first bioassay, a 40- or 70-fold increase was used to reach that objective. At this concentration level, other bioassays were explored to determine the effect as a function of time. Surprisingly, a real reduction in the symptoms was observed after three weeks, and there was a significant decrease in the bacterial load level (~98%) compared to the untreated control plants. During this period, flowering and formation of tomato fruits were observed in plants treated with PNB.

9.
Plant Dis ; 105(9): 2560-2566, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33455443

RESUMO

The potato psyllid Bactericera cockerelli (Sulc) (Hemiptera: Triozidae) is a pest of solanaceous crops (order Solanales), including potato (Solanum tuberosum L.) and tomato (S. lycopersicum L.). Feeding by high populations of nymphs causes psyllid yellows while adults and nymphs are vectors of the plant pathogen 'Candidatus Liberibacter solanacearum'. Foliar symptoms that were consistent with either 'Ca. L. solanacearum' infection or psyllid yellows were observed in 2019 on tomatillo (Physalis ixocarpa Brot.; family Solanaceae) grown within an experimental plot located near Saltillo, Mexico. This study had three primary objectives: 9i) determine whether the foliar symptoms observed on tomatillo were associated with 'Ca. L. solanacearum' infection, (ii) identify the haplotypes of 'Ca. L. solanacearum' and potato psyllids present in the symptomatic plot, and (iii) use gut content analysis to infer the plant sources of 'Ca. L. solanacearum'-infected psyllids. Results confirmed that 71% of symptomatic plants and 71% of psyllids collected from the plants were infected with 'Ca. L. solanacearum'. The detection of 'Ca. L. solanacearum' in plants and psyllids and the lack of nymphal populations associated with psyllid yellows strongly suggests that the observed foliar symptoms were caused by 'Ca. L. solanacearum' infection. All infected plants and insects harbored the more virulent 'Ca. L. solanacearum' haplotype B but one psyllid was also coinfected with haplotype A. The potato psyllids were predominantly of the central haplotype but one psyllid was identified as the western haplotype. Molecular gut content analysis of psyllids confirmed the movement of psyllids between noncrop habitats and tomatillo and indicated that 'Ca. L. solanacearum' infection of psyllids was associated with increased plant diversity in their diet.


Assuntos
Physalis , Rhizobiaceae , Solanum tuberosum , Liberibacter , México , Doenças das Plantas , Rhizobiaceae/genética , Solanales
10.
Pathogens ; 11(1)2021 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-35055996

RESUMO

The considerable economic losses in citrus associated with 'Candidatus Liberibacter' and 'Candidatus Phytoplasma' presence have alerted all producing regions of the world. In Chile, none of these bacteria have been reported in citrus species. During the years 2017 and 2019, 258 samples presenting symptoms similar to those associated with the presence of these bacteria were examined. No detection of 'Ca. Liberibacter' associated with "huanglongbing" disease was obtained in the tested samples; therefore, this quarantine pest is maintained as absent in Chile. However, 14 plants resulted positive for phytoplasmas enclosed in subgroups 16SrV-A (12 plants) and 16SrXIII-F (2 plants). Although they have been found in other plant species, this is the first report of these phytoplasmas in citrus worldwide.

11.
Plant Dis ; 105(1): 199-201, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32697180

RESUMO

'Candidatus Liberibacter asiaticus', an unculturable α-proteobacterium, is associated with citrus huanglongbing (HLB), a devastating disease threatening citrus production in Brazil and worldwide. In this study, a draft whole-genome sequence of 'Ca. L. asiaticus' strain 9PA from a sweet orange (cultivar Pera) tree collected in São Paulo State, Brazil, is reported. The 9PA genome is 1,231,881 bp, including two prophages, with G+C content of 36.7%. This is the first report of a whole-genome sequence of 'Ca. L. asiaticus' from Brazil or South America. The 9PA genome sequence will enrich 'Ca. L. asiaticus' genome resources and facilitate HLB research and control in Brazil and the world.


Assuntos
Citrus , Rhizobiaceae , Brasil , Liberibacter , Doenças das Plantas , Rhizobiaceae/genética
12.
Plant Dis ; 105(1): 193-195, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32729808

RESUMO

'Candidatus Liberibacter asiaticus' (CLas) is an unculturable phloem-restricted α-proteobacterium associated with huanglongbing (HLB). Here, we provide the genome sequence of CLas strain CoFLP1 from its insect vector Diaphorina citri (Hemiptera: Liviidae) collected in the department of La Guajira, Colombia. The CoFLP1 strain is composed of 1,231,639 bp with G+C 36.5% content. This study reports the first CLas genome sequence from Colombia, which will add to CLas genome resources and help to elucidate our understanding of the introduction pathway of HLB in South America.


Assuntos
Citrus , Hemípteros , Animais , Colômbia , Liberibacter , Doenças das Plantas , América do Sul
13.
Plant Dis ; 105(1): 34-42, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33201785

RESUMO

'Candidatus Liberibacter asiaticus' (Las) is an unculturable, phloem-limited, insect-transmitted bacterium associated with the Asiatic form of huanglongbing (HLB), the most destructive citrus disease. In Asia and the Americas, it is transmitted by the Asian citrus psyllid (Diaphorina citri Kuwavama). Despite considerable research, little is known about the processes involved in plant infection and colonization by Las. This study was conducted to determine whether the basal portion (below girdling) of the plant is an important route for Las to move laterally from a point of inoculation on a branch to pathogen-free branches elsewhere in the canopy, and to quantify the influence of actively growing tissues on vertical upward (acropetally) or downward (basipetally) movement of Las. Nongirdled and fully or partially girdled stems of potted plants of 'Pera' sweet orange, graft-inoculated above or below girdling, were sampled in distinct regions and assessed by qPCR, 6 months postinoculation. Las invaded all regions of partially and nongirdled plants but remained restricted to the inoculated regions of fully girdled plants, evidence that in planta bacterium movement is limited to the phloem. In fully girdled plants, starch accumulated above the girdling site, probably because of changes in flow of phloem sap. To study the influence of actively growing tissues, inoculated 'Valencia' sweet orange plants were kept intact or were top- or root-pruned to force production of new tissues, and sampled at 15-day intervals. Las migrated rapidly and most predominantly toward newly developing root and leaf tissues. The rapid and predominant movement of Las to newly developed shoots and roots would explain failures of canopy heat treatments and pruning to cure HLB-affected trees, and reinforces the need to protect rapidly growing new shoots from feeding by D. citri in order to minimize transmission and spread of the pathogen by the vector within and between orchards.


Assuntos
Citrus , Hemípteros , Rhizobiaceae , Animais , Liberibacter , Doenças das Plantas
14.
Insects ; 11(10)2020 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-33022967

RESUMO

Huanglongbing (HLB) is a citrus disease of worldwide importance, associated with the presence of Candidatus Liberibacter asiaticus (Las) and vectored by the psyllid Diaphorina citri in Asia and the Americas. To properly manage HLB, removal of inoculum sources and control of the psyllid are undertaken. We evaluated the percentage of the psyllid population with Las, sampled from yellow sticky traps over a three-year period and its relationship with insect population, regions, season of the year, and HLB management in citrus areas in the southwestern, central, and northern regions of São Paulo (SP) and southwestern region of Minas Gerais states, Brazil. In each reading, up to 50 psyllids per region were collected and detection of Las in individual psyllids were made by quantitative polymerase chain reaction. The percentage of psyllids with Las-an average of 65.3%-was constant throughout the year in the southwestern region of SP state, while showing an increase from spring to autumn when sampled from central to northern regions. The proportion of psyllids carrying Las from each region and year period were compared by a proportion test and spectral density analysis. The proportion of psyllids carrying Las evaluated in the same region in different seasons presented statistical differences in central (Araraquara) and southwestern (Santa Cruz do Rio Pardo) regions in 2015, with higher values in the first semester (summer and autumn) than in the second semester (winter and spring). Orchards with poor HLB management had higher incidence of psyllids with Las. Spectral density analysis indicated that good management areas had 50% less relevant peaks of psyllids with Las than in areas with poor HLB management practices. The relationship between the percentage of psyllids carrying Las and the number of captured psyllids in the region in a given time denotes the most critical intake time for HLB spread in citrus orchards. The reduction in the population of psyllids carrying Las is a direct benefit from the use of good management practices.

15.
Plant Dis ; 104(6): 1584-1588, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32357120

RESUMO

'Candidatus Liberibacter spp.' are associated with the most devastating disease of citrus Huanglongbing (HLB). In previous work, we established an in situ tissue print method for the detection of 'Ca. L. asiaticus' (CLas) in sweet orange. We optimized the protocol by preincubation of the anti-Omp antibody with 5% (w/v) extract of healthy rough lemon. This simple process eliminated cross reactions between citrus and the antibody. The optimized protocol enhanced the application of the polyclonal antibody, and we demonstrate detection of CLas from all parts of the world, including isolates from Japan, Thailand, Vietnam, Pakistan, Saudi Arabia, Brazil, the United States, and a selection of strains from China representative of the diversity extant there. The assay also was used to detect four isolates of 'Ca. L. africanus' (CLaf) representative of the diversity present in South Africa. The corresponding outer membrane genes of representative isolates were cloned and sequenced. The coding sequences were highly conserved, and isolates of CLas and CLaf shared 53.8 to 55.9% identity between species at the amino acid level. The optimized protocol is efficient for recognition of both CLas and CLaf in phloem cells of different citrus tissues regardless of geographic origin of the HLB samples. The method is simple and scales well to match the urgent need for accurate, sensitive, and high-throughput screening of HLB bacteria, and may play an important role especially for plant inspection and quarantine programs.


Assuntos
Citrus , Brasil , China , Japão , Paquistão , Doenças das Plantas , Arábia Saudita , África do Sul , Vietnã
16.
Insects ; 11(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272569

RESUMO

African citrus psyllid (Trioza erytreae (Del Guercio)) is a vector insect of the bacterium Candidatus Liberibacter africanus, the putative causal agent of Huanglongbing, the most devastating citrus disease in the world. The insect was found on the island of Madeira in 1994 and in mainland Portugal in 2015. Present in the north and center of the country, it is a threat to Algarve, the main citrus-producing region. Trioza erytreae eggs and first instar nymphs are sensitive to the combination of high temperatures and low relative humidity. Daily maximum air temperature and minimum relative humidity data from 18 weather stations were used to calculate the water vapor pressure deficit (vpd) from 2004 to 2018 at various locations. Based on the mean vpd and the number of unfavorable days (vpd < 34.5 and vpd < 56 mbar) of two time periods (February to May and June to September), less favorable zones for T. erytreae were identified. The zones with thermal and water conditions like those observed in the Castelo Branco and Portalegre (Center), Beja (Alentejo), Alte, and Norinha (Algarve) stations showed climatic restrictions to the development of eggs and first instar nymphs of African citrus psyllid. Effective control measures, such as the introduction and mass release of Tamarixia dryi (Waterson), a specific parasitoid, and chemical control are necessary in favorable periods for T. erytreae development, such as in spring and in areas with limited or no climate restrictions.

17.
Microorganisms ; 8(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272632

RESUMO

Nowadays, Huanglongbing (HLB) disease, associated with Candidatus Liberibacter asiaticus (CLas), seriously affects citriculture worldwide, and no cure is currently available. Transcriptomic analysis of host-pathogen interaction is the first step to understand the molecular landscape of a disease. Previous works have reported the transcriptome profiling in response to HLB in different susceptible citrus species; however, similar studies in tolerant citrus species, including Mexican lime, are limited. In this work, we have obtained an RNA-seq-based differential expression profile of Mexican lime plants challenged against CLas infection, at both asymptomatic and symptomatic stages. Typical HLB-responsive differentially expressed genes (DEGs) are involved in photosynthesis, secondary metabolism, and phytohormone homeostasis. Enrichment of DEGs associated with biotic response showed that genes related to cell wall, secondary metabolism, transcription factors, signaling, and redox reactions could play a role in the tolerance of Mexican lime against CLas infection. Interestingly, despite some concordance observed between transcriptional responses of different tolerant citrus species, a subset of DEGs appeared to be species-specific. Our data highlights the importance of studying the host response during HLB disease using as model tolerant citrus species, in order to design new and opportune diagnostic and management methods.

18.
Data Brief ; 29: 105198, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32071978

RESUMO

Mexican lime (Citrus aurantifolia) belongs to the Rutaceae family and nowadays is one of the major commercial citrus crops in different countries. In Mexico, Mexican lime production is impaired by Huanglongbing (HLB) disease associated to Candidatus Liberibacter asiaticus (CLas) bacteria. To date, transcriptomic studies of CLas-Citrus interaction, have been performed mainly in sweet citrus models at symptomatic (early) stage where pleiotropic responses could mask important, pathogen-driven host modulation as well as, host antibacterial responses. Additionally, well-assembled reference transcriptomes for acid limes including C. aurantifolia are not available. The development of improved transcriptomic resources for CLas-citrus pathosystem, including both asymptomatic (early) and symptomatic (late) stages, could accelerate the understanding of the disease. Here, we provide the first transcriptomic analysis from healthy and HLB-infected C. aurantifolia leaves at both asymptomatic and symptomatic stages, using a RNA-seq approach in the Illumina NexSeq500 platform. The construction of the assembled transcriptome was conducted using the predesigned workflow Transflow and a total of 41,522 tentative transcripts (TTs) obtained. These C. aurantifolia TTs were functionally annotated using TAIR10 and UniProtKB databases. All raw reads were deposited in the NCBI SRA with accession numbers SRR10353556, SRR10353558, SRR10353560 and SRR10353562. Overall, this dataset adds new transcriptomic valuable tools for future breeding programs, will allow the design of novel diagnostic molecular markers, and will be an essential tool for studying the HLB disease.

19.
Insects ; 10(9)2019 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-31500212

RESUMO

Psyllids (Hemiptera: Psylloidea) can transmit the phloem restricted bacterium 'Candidatus Liberibacter solanacearum' (Lso). In Europe, Lso causes severe losses to carrot and represents a threat to the potato industry. A rising concern is Lso transmission from carrot to potato and within potato, and this has driven the need for monitoring populations of psyllid species which could serve as vectors on both crops. This would provide a fundamental understanding of the epidemiology of Lso. Different sampling methods were used to survey populations of psyllid species in commercial carrot and potato fields in central and eastern mainland Spain from 2015 to 2017. Two psyllid species, Bactericera trigonica and Bactericera nigricornis were found on carrot and potato crops. In carrot fields the most abundant species was B. trigonica (occurring from crop emergence to harvest); whereas in potato crops the most abundant psyllid species was B. nigricornis. Depending on field location, the maximum psyllid populations occurred between June and October. Since B. nigricornis was found on both carrot and potato and is the only psyllid species able to feed and reproduce on both these crops in Europe, there is the potential risk of Lso transmission from carrot to potato.

20.
J Biotechnol ; 285: 74-83, 2018 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-30194966

RESUMO

Citrus huanglongbing (HLB) is a devastating disease associated with Candidatus Liberibacter asiaticus spp. (CLas), a bacterium restricted to the sieve tube system of the phloem that is transmitted by the psyllid vector, Diaphorina citri. In this study, the human antimicrobial peptides, lysozyme and ß-defensin 2, were targeted to the vascular tissue of Mexican lime (Citrus x aurantifolia [Christm.] Swingle) by fusion to a phloem-restricted protein. Localized expression was achieved, via Agrobacterium tumefaciens-mediated transformation of the stem, which led to protein expression and mobilization within the vascular tissue of heterotrophic tissues. HLB-infected plants were monitored for 360 days. Lower bacteria titers were observed in plants expressing either ß-defensin 2, lysozyme, or the combination thereof, and these plants had increased photosynthesis, compared to untreated control trees. Thus, targeting of antimicrobial proteins to the vascular tissue was effective in decreasing CLas titer, and alleviating citrus greening symptoms. Based on these findings, this strategy could be used to effectively treat plants that are already infected with bacterial pathogens that reside in the phloem translocation stream.


Assuntos
Citrus , Defensinas , Muramidase , Doenças das Plantas/prevenção & controle , Proteínas de Plantas , Rhizobiaceae , Agrobacterium/genética , Citrus/genética , Citrus/metabolismo , Citrus/microbiologia , Defensinas/genética , Defensinas/farmacologia , Muramidase/genética , Muramidase/farmacologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Plantas/farmacologia , Proteínas Recombinantes de Fusão/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA