Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Physiol Regul Integr Comp Physiol ; 323(6): R910-R920, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36250861

RESUMO

Large body mass (Mb) in vertebrates is associated with longer pulse intervals between heartbeats (PI) and thicker arterial walls. Longer PI increases the time for diastolic pressure decay, possibly resulting in loss of cardiac energy as "oscillatory power," whereas thicker arterial walls may affect the transmission of impulses and sensing of pressure fluctuations thus impairing baroreflex function. We aimed to investigate the effect of growth on the relative cardiac energy loss and baroreflex function. We predicted that 1) the relative use of cardiac energy should be preserved with increased time constant for pressure decay (τ = vascular resistance × compliance) and 2) if arterial circumferential distensibility does not change, baroreflex function should be unaltered with Mb. To test these hypotheses, we used green iguanas (Iguana iguana) weighing from 0.03 to 1.34 kg (43-fold increment in Mb). PI (P = 0.037) and τ (P = 0.035) increased with Mb, whereas the oscillatory power fraction (P = 0.245) was unrelated to it. Thus, the concomitant alterations of τ and PI allowed the conservation of cardiac energy in larger lizards. Larger animals had thicker arterial walls (P = 0.0007) and greater relative collagen content (P = 0.022). Area compliance scaled positively to Mb (P = 0.045), though circumferential distensibility (P = 0.155) and elastic modulus (P = 0.762) were unaltered. In addition, baroreflex sensitivity, measured by both the pharmacological (P = 0.152) and sequence methods (P = 0.088), and the baroreflex effectiveness index (P = 0.306) were also unrelated to Mb. Therefore, changes in arterial morphology did not affect circumferential distensibility and presumably sensing of pressure fluctuation, and the cardiovagal baroreflex is preserved across different Mb.


Assuntos
Barorreflexo , Iguanas , Animais , Barorreflexo/fisiologia , Iguanas/anatomia & histologia , Iguanas/fisiologia , Frequência Cardíaca , Pressão Sanguínea/fisiologia , Coração
2.
J Comp Physiol B ; 191(3): 553-562, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33629153

RESUMO

Arterial wall tension increases with luminal radius and arterial pressure. Hence, as body mass (Mb) increases, associated increases in radius induces larger tension. Thus, it could be predicted that high tension would increase the potential for rupture of the arterial wall. Studies on mammals have focused on systemic arteries and have shown that arterial wall thickness increases with Mb and normalizes tension. Reptiles are good models to study scaling because some species exhibit large body size range associated with growth, thus, allowing for ontogenetic comparisons. We used post hatch American alligators, Alligator mississippiensis, ranging from 0.12 to 6.80 kg (~ 60-fold) to investigate how both the right aortic arch (RAo) and the left pulmonary artery (LPA) change with Mb. We tested two possibilities: (i) wall thickness increases with Mb and normalizes wall tension, such that stress (stress = tension/thickness) remains unchanged; (ii) collagen content scales with Mb and increases arterial strength. We measured heart rate and systolic and mean pressures from both systemic and pulmonary circulations in anesthetized animals. Once stabilized alligators were injected with adrenaline to induce a physiologically relevant increase in pressure. Heart rate decreased and systemic pressures increased with Mb; pulmonary pressures remained unchanged. Both the RAo and LPA were fixed under physiological hydrostatic pressures and displayed larger radius, wall tension and thickness as Mb increased, thus, stress was independent from Mb; relative collagen content was unchanged. We conclude that increased wall thickness normalizes tension and reduces the chances of arterial walls rupturing in large alligators.


Assuntos
Jacarés e Crocodilos , Animais , Pressão Arterial , Artérias , Pulmão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA