Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Heliyon ; 10(13): e32809, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39050451

RESUMO

Kombucha is a potential probiotic tea-based drink with increasing worldwide consumption. Studies on this probiotic beverage are growing rapidly, especially about micronutrients and microbial population. As such, the present study performed the molecular identification of the microorganism and evaluated 5-methyltetrahydrofolate content by HPLC-DAD, phenolic compounds, flavonoids, carotenoids, antioxidant activity by spectrophotometric methods, and physicochemical composition of green tea kombucha on fermentation days 1, 3, 7, 14, and 21. DNA sequencing identified the Microbacterium genus as predominant. However, was unable to safely determine the species level because of the rRNA 16S gene sequence similarity between four species M. ureisolvens, M. yannicii, M. chocolatum e M. atlanticum. The concentration of 5-methyltetrahydrofolate found on the third day was 39.12 ± 1.32 µg/mL (liquid) and 45.78 ± 8.42 µg/mL (polymeric biofilm); On the twenty-first day it was 50.87 ± 3.56 µg/mL (liquid) and 54.88 ± 3.89 µg/mL (polymeric biofilm). Total phenolic compounds increased with fermentation; however, flavonoids and carotenoids were degraded by the process. The information on 5-methyltetrahydrofolate is unprecedented and highly relevant for food guidelines, since related deficiencies can lead to fetal malformation in the first three months of pregnancy. Lastly, the best fermentation time to obtain 5-methyltetrahydrofolate and others bioactive compounds is between days 7-14. Further analyses are also encouraged to understand the bioavailability of the vitamin.

2.
Foods ; 13(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38890996

RESUMO

Kombucha is a fermented beverage that originated in China and is spread worldwide today. The infusion of Camellia sinensis leaves is mandatory as the substrate to produce kombucha but alternative plant infusions are expected to increase the opportunities to develop new fermented food products analogous to kombucha, with high technological potential and functional properties. This review gathers information regarding promising alternative substrates to produce kombucha-analogous beverages, focusing on plants available in the Amazonia biome. The data from the literature showed a wide range of alternative substrates in increasing expansion, with 37 new substrates being highlighted, of which ~29% are available in the Amazon region. Regarding the technological production of kombucha-analogous beverages, the following were the most frequent conditions: sucrose was the most used carbon/energy source; the infusions were mostly prepared at 90-100 °C, which allowed increased contents of phenolic compounds in the product; and 14 day-fermentation at 25-28 °C was typical. Furthermore, herbs with promising bioactive compound compositions and high antioxidant and antimicrobial properties are usually preferred. This review also brings up gaps in the literature, such as the lack of consistent information about chemical composition, sensory aspects, biological properties, and market strategies for fermented beverages analogous to kombucha produced with alternative substrates. Therefore, investigations aiming to overcome these gaps may stimulate the upscale of these beverages in reaching wide access to contribute to the modern consumers' quality of life.

3.
Microorganisms ; 12(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38930509

RESUMO

(1) Background: The human microbiota is essential for maintaining a healthy body. The gut microbiota plays a protective role against pathogenic bacteria. Probiotics are live microorganisms capable of preventing and controlling gastrointestinal and balancing the immune system. They also aid in better nutrients and vitamins absorption. Examples of natural probiotic cultures are kefir and kombucha. (2) Methods: Therefore, the aim of this review was to address the beneficial properties of probiotic kefir and kombucha using a Boxplot analysis to search for scientific data in the online literature up to January 2024: (Latin American and Caribbean Health Sciences (LILACS), PubMed, Medical Literature Analysis (MED-LINE), Science Direct, Google Scholar/Google Academic, Bioline Inter-national and Springer Link). Boxplots showed the summary of a set of data "Index Terms-Keywords" on kefir and kombucha in three languages (English, Portuguese and Spanish). (3) Results: Google Scholar was the database with the highest number of articles found, when the search for the keywords used in the study (containing ~4 × 106-~4 million articles available). This was Followed by the Science Direct database, containing ~3 × 106-~3 million articles available, and the BVS databases-Biblioteca Virtual de Saúde (Virtual Health Library) e Lilacs, both containing a value of ~2 × 106-~2 million articles available. The databases containing the smallest number of articles found were Nutrients and Medline, both containing a value of ≤0.1 × 106-≤100 thousand articles. (4) Conclusions: Scientific studies indicate that kefir and kombucha certainly contain various functional properties, such as antimicrobial, antitumor, anticarcinogenic and immunomodulatory activity, in addition to having a microbiological composition of probiotic bacteria and yeasts. Kefir and kombucha represent key opportunities in the food and clinic/medical fields.

4.
Food Microbiol ; 116: 104357, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37689417

RESUMO

Kombucha is a fermented beverage derived from a sweetened tea fermentation inoculated with a bacteria-yeast consortium referred to as Symbiotic Culture of Bacteria and Yeast (SCOBY). Different SCOBY cultures can impact the beverage's quality and make the whole process highly variable. Adding Saccharomyces yeast cultures to the fermentation process can avoid stalled fermentations, providing a reproducible beverage. Here, we explored using different Saccharomyces eubayanus strains together with SCOBY in the context of kombucha fermentation. Our results show that yeast x SCOBY co-cultures exhibited a robust fermentation profile, providing ethanol and acetic acid levels ranging from 0,18-1,81 %v/v and 0,35-1,15 g/L, respectively. The kombucha volatile compound profile of co-cultures was unique, where compounds such as Isopentyl acetate where only found in yeast x SCOBY fermentations. Metabarcoding revealed that the SCOBY composition was also dependent on the S. eubayanus genotype, where besides Saccharomyces, amplicon sequence variants belonging to Brettanomyces and Starmerella were detected. These differences concomitated global changes in transcript levels in S. eubayanus related to the metabolism of organic molecules used in kombucha fermentation. This study highlights the potential for exploring different S. eubayanus strains for kombucha fermentation, and the significant yeast genotype effect in the profile differentiation in this process.


Assuntos
Brettanomyces , Saccharomyces , Saccharomycetales , Fermentação , Saccharomyces/genética , Saccharomycetales/genética
5.
Polymers (Basel) ; 15(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37050315

RESUMO

In recent years, several researchers have focused their studies on the development of sustainable biomaterials using renewable sources, including the incorporation of living biological systems. One of the best biomaterials is bacterial cellulose (BC). There are several ways to produce BC, from using a pure strain to producing the fermented drink kombucha, which has a symbiotic culture of bacteria and yeasts (SCOBY). Studies have shown that the use of agricultural waste can be a low-cost and sustainable way to create BC. This article conducts a literature review to analyze issues related to the creation of BC through kombucha production. The databases used were ScienceDirect, Scopus, Web of Science, and SpringerLink. A total of 42 articles, dated from 2018 to 2022, were referenced to write this review. The findings contributed to the discussion of three topics: (1) The production of BC through food waste (including patents in addition to the scientific literature); (2) Areas of research, sectors, and products that use BC (including research that did not use the kombucha drink, but used food waste as a source of carbon and nitrogen); and (3) Production, sustainability, and circular economy: perspectives, challenges, and trends in the use of BC (including some advantages and disadvantages of BC production through the kombucha drink).

6.
Food Technol Biotechnol ; 61(4): 494-504, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38205046

RESUMO

Research background: Research into bacterial cellulose production has been growing rapidly in recent years, as it has a potential use in various applications, such as in the medical and food industries. Previous studies have focused on optimising the production process through various methods, such as using different carbon sources and manipulating environmental conditions. However, further research is still needed to optimise the production process and understand the underlying mechanisms of bacterial cellulose synthesis. Experimental approach: We used Plackett-Burman and Box-Behnken experimental designs to analyse the effect of different factors on bacterial cellulose production. The fermentation kinetics of the optimised medium was analysed, and the produced cellulose was characterised. This approach was used because it allows the identification of significant factors influencing bacterial cellulose growth, the optimisation of the culture medium and the characterisation of the produced cellulose. Results and conclusions: The results showed that higher sucrose concentrations, higher kombucha volume fractions and a smaller size of the symbiotic culture of bacteria and yeast were the most important factors for the improvement of bacterial cellulose production, while the other factors had no relevant influence. The optimised medium showed an increase in the concentrations of total phenolic compounds and total flavonoids as well as significant antioxidant activity. The produced pure bacterial cellulose had a high water absorption capacity as well as high crystallinity and thermal stability. Novelty and scientific contribution: The study makes an important scientific contribution by optimising the culture medium to produce bacterial cellulose more productively and efficiently. The optimised medium can be used for the production of a kombucha-like beverage with a high content of bioactive compounds and for the production of bacterial cellulose with high crystallinity and thermal stability. Additionally, the study highlights the potential of bacterial cellulose as a highly water-absorbent material with applications in areas such as packaging and biomedical engineering.

7.
Biosensors (Basel) ; 12(12)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36551079

RESUMO

Antioxidants are responsible for many beneficial health effects and are highly present in natural products, such as kombucha. Biosensors' development targeting antioxidants and phytomarkers are an active research field. This work aimed to propose a voltammetric polyphenolxidase (Cordia superba) biosensor for catechin and total phenolic compounds quantification in kombucha samples. Optimizations were performed on the biosensor of Cordia superba to improve the accuracy and selectivity, such as enzyme-substrate interaction time, analytical responses for different patterns and signal differences with the carbon paste and modified carbon paste electrode. Kombucha probiotic drink samples were fermented for 7 to 14 days at a controlled temperature (28 ± 2 °C). A linear curve was made for catechin with a range of 10.00 to 60.00 µM, with a limit of detection of 0.13 µM and limit of quantification of 0.39 µM. The biosensor proposed in this work was efficient in determining the patterns of phenolic compounds in kombucha.


Assuntos
Técnicas Biossensoriais , Catequina , Cordia , Antioxidantes , Fenóis , Carbono/química
8.
Polymers (Basel) ; 14(17)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36080707

RESUMO

The purpose of this research is to produce and characterize bacterial cellulose (BC) films coated with chitosan (BC-CH). BC films were produced in a fermentation medium based on Camellia sinensis tea and dextrose (12 days at 25 °C) and subsequently treated with coating-forming solutions (CFSs) based on chitosan (BC-CH 0.5%, BC-CH 1.0%, and BC-CH 1.5%). As a result, the FTIR spectra of BC and BC-CH 1.5% showed the main characteristic bands of cellulose and chitosan. In the physicochemical characterization of the films, it was found that the incorporation of the chitosan coatings did not affect the thickness; however, it decreased the luminosity (L*) and increased redness (a*), yellowness (b*), and opacity (75.24%). Additionally, the light absorption properties in the UV-Vis range were improved. Furthermore, the application of the CFSs increased: the solubility (64.91%), the antimicrobial activity against S. aureus (6.55 mm) and E. coli (8.25 mm), as well as the antioxidant activity (57.71% and 24.57% free radical scavenging activity), and the content of total phenols (2.45 mg GAE/g). Finally, our results suggest that the BC-CH films developed in the present study show a potential application as active packaging material for food.

9.
Curr Res Food Sci ; 5: 360-365, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35198995

RESUMO

Kombucha is a millennial beverage with great potential due to its functional claims. The infusion of black or green tea leaves (Camellia sinensis) and sugar is fermented by a symbiotic culture of bacteria and yeasts (SCOBY) resulting in an acidic and lightly carbonated beverage, kombucha. It offers in its composition phytoconstituents with relevant nutritional valor, among these, flavonoids that stand out for their antioxidant, anti-inflammatory characteristics and their association with decreasing the risks of various diseases. Previous studies in vivo and in vitro have shown promising results using kombucha as a functional beverage. Those studies promote the search for alternative raw materials for the production of kombucha, in addition, new ingredients interfere in the production, constitution, and nutritional potentialities of the beverage, as well as its functionality in the face of diseases. Thus, this graphical review compiles relevant scientific data on kombucha involving its origin, production, nutritional potential, and possible health benefits associated with its consumption.

10.
Food Microbiol ; 101: 103889, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34579857

RESUMO

Kombucha is a traditional fermented beverage gaining popularity around the world. So far, few studies have investigated its microbiome using next-generation DNA sequencing, whereas the correlation between the microbial community and metabolites evolution along fermentation is still unclear. In this study, we explore this correlation in a traditionally produced kombucha by evaluating its microbial community and the main metabolites produced. We also investigated the effects of starter cultures processed in three different ways (control, starter culture without liquid suspension (CSC), and a freeze-dried starter culture (FDSC)) to evaluate changes in kombucha composition, such as antioxidant activity and sensory analysis. We identified seven genera of bacteria, including Komagataeibacter, Gluconacetobacter, Gluconobacter, Acetobacter, Liquorilactobacillus, Ligilactobacillus, and Zymomonas, and three genera of yeasts, Dekkera/Brettanomyces, Hanseniaspora, and Saccharomyces. Although there were no statistically significant differences in the acceptance test in sensory analysis, different starter cultures resulted in products showing different microbial and biochemical compositions. FDSC decreased Zymomonas and Acetobacter populations, allowing for Gluconobacter predominance, whereas in the control and CSC kombuchas the first two were the predominant genera. Results suggest that the freeze-drying cultures could be implemented to standardize the process and, despite it changes the microbial community, a lower alcohol content could be obtained.


Assuntos
Bactérias/classificação , Bebidas Fermentadas/microbiologia , Microbiota , Leveduras/classificação , Fermentação , Liofilização
11.
Braz. J. Pharm. Sci. (Online) ; 58: e20766, 2022. graf
Artigo em Inglês | LILACS | ID: biblio-1420428

RESUMO

Abstract Kombucha (tea and biocelluose) has been used worldwide due to its high nutritional, functional, and economic potential. This fermented tea has been used in folk medicine to treat several pathological conditions and its biocellulose in the industrial sector. In this context, this paper presents a scientific literature review on the main phytochemicals of Kombucha and respective biological activities to assess their potential uses. The tea has presented a wide range of bioactive compounds such as amino acids, anions, flavonoids, minerals, polyphenols, vitamins, and microorganisms. Moreover, its biocellulose is rich in fibers. These compounds contribute to various biological responses such as antioxidant, hepatoprotective, antitumoral, antidiabetic, and antihypercholesterolemic effects. In this sense, both the tea and its biocellulose are promising for human use. Besides, Kombucha presents itself as a drink option for vegetarians and/or those seeking healthier diets, as its biocellulose can bring metabolic benefits. Our review demonstrates that both can be used as functional foods and/or sources of bioactive compounds for food and industrial applications.


Assuntos
Chá de Kombucha/análise , Chá de Kombucha/efeitos adversos , Alimento Funcional/classificação , Fermentação , Compostos Fitoquímicos/antagonistas & inibidores
12.
Biosensors (Basel) ; 11(3)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33810105

RESUMO

In this work, we developed an enzymatic voltammetric biosensor for the determination of catechin and gallic acid in green tea and kombucha samples. The differential pulse voltammetry (DPV) methodology was optimized regarding the amount of crude enzyme extract, incubation time in the presence of the substrates, optimal pH, reuse of the biosensor, and storage time. Samples of green tea and kombucha were purchased in local markets in the city of Goiânia-GO, Brazil. High performance liquid chromatography (HPLC) and Folin-Ciocalteu spectrophotometric techniques were performed for the comparison of the analytical methods employed. In addition, two calibration curves were made, one for catechin with a linear range from 1 to 60 µM (I = -0.152 * (catechin) - 1.846), with a detection limit of 0.12 µM and a quantification limit of 0.38 µM and one for gallic acid with a linear range from 3 to 60 µM (I = -0.0415 * (gallic acid) - 0.0572), with a detection limit of 0.14 µM and a quantification limit of 0.42 µM. The proposed biosensor was efficient in the determination of phenolic compounds in green tea.


Assuntos
Técnicas Biossensoriais , Fungos/isolamento & purificação , Chá de Kombucha/microbiologia , Chá/microbiologia , Calibragem , Catequina/análise , Cromatografia Líquida de Alta Pressão , Análise de Alimentos , Ácido Gálico/análise , Chá de Kombucha/análise , Fenóis/análise , Extratos Vegetais , Espectrofotometria , Chá/química
13.
J Food Sci ; 86(3): 740-748, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33580510

RESUMO

Kombucha is a black tea-based, non-alcoholic beverage fermented by yeast and bacteria are known for its refreshing scent and taste and presents biological characteristics, namely antioxidant, antimicrobial and anti-inflammatory activity. The present study compared traditional kombucha prepared with black tea and green tea to kombuchas produced with several alternative substrates, including white tea, chrysanthemum, honeysuckle, and mint infusions. Throughout the fermentation process, liquid and gas chromatography analyzed sugars, ethanol, organic acids, and volatile compounds. Sugar consumption was substrate-dependent, with mint kombucha having the highest amount of residual sugar and honeysuckle having the lowest. Forty-six volatile organic compounds were detected, including alcohols, esters, acids, aldehydes, ketones, and other compounds. Twenty-two compounds were produced during the fermentation and identified in all kombuchas; some of these compounds represented fruity and floral aromas. Another 24 compounds were substrate specific. Notably, the herb-based kombuchas (chrysanthemum, honeysuckle, and mint) contained several compounds absent in the tea-based kombuchas and are associated with minty, cooling, and refreshing aromas. Mint and green tea kombucha attained the highest and lowest overall sensorial acceptance ratings, respectively. This study demonstrated herbal substrates' suitability to prepare kombucha gastronomically with volatile compound and flavor profiles distinct from tea-based kombuchas. PRACTICAL APPLICATION: The kombucha beverage is a low-caloric functional drink that is increasingly popular around the world. While it is traditionally produced with black or green tea, this paper explores its production based on other herbal and floral infusions. The kombucha analogs presented in this paper can provide consumers with healthy alternatives for sugary soft drinks while also offering a broader range of flavors.


Assuntos
Chá de Kombucha/análise , Chás de Ervas/análise , Anti-Infecciosos/análise , Anti-Inflamatórios/análise , Antioxidantes/análise , Bebidas/análise , Camellia sinensis/química , Etanol/análise , Fermentação , Sensação , Açúcares/análise , Paladar , Chá/química , Compostos Orgânicos Voláteis/análise
14.
Braz. arch. biol. technol ; Braz. arch. biol. technol;64: e21210023, 2021. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1355828

RESUMO

Abstract In this study, physicochemical, microbiological, and sensory properties, antibacterial and antifungal effects of kombucha teas produced with some small berry fruits (blackberry, raspberry, and red goji berry) were investigated. During fermentation, titratable acidity and pellicle biomass weights increased whereas water activity, brix, viscosity, L* and b* values decreased. At the end of fermentation, the highest minerals determined in the samples were potassium and magnesium. Also, catechin and gallic acid were detected in all samples. Samples produced with blackberry were the most appreciated ones in all criteria. The highest antibacterial and antifungal effects were determined in samples containing blackberries on Staphylococcus aureus and Rhizopus nigricans (24.36 and 20.53 mm zone diameters). The antibacterial effect, MIC, and MBC values (0.023 and 0.016 mg/L) on Staphylococcus aureus. Regarding the antifungal effect, the MIC and MFC values were determined in tea produced with blackberry on Rhizopus nigricans with 0.035 mg/L, and 0.023 mg/L.

15.
Curr Nutr Rep ; 9(3): 163-170, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32415557

RESUMO

PURPOSE OF THE REVIEW: Glucuronic acid is contained naturally in kombucha beverages due to the associations between bacteria and yeasts during its fermentation. The purpose of this review is to describe the literature related to the hepatoprotective effect associated with glucuronic acid present in different kombucha beverages. RECENT FINDINGS: Although previous research supports beneficial hepatoprotective effects of glucuronic acid consumption from kombucha, these effects are mainly attributed to the tea phytochemicals. However, there are some improvements in methodological deficiencies in some in vivo studies that should be considered. There is no sufficient evidence to generalize the adverse effects of kombucha consumption. Consumption of kombucha could be considered a safe practice in healthy populations due to its hepatoprotective effects. The content of the beneficial or toxic components is very variable because it depends on its manufacturing process. In persons with side sickness, other conditions such as pregnancy, and hypersensitivity to some kombucha components, a restriction in its consumption must be advisable.


Assuntos
Ácido Glucurônico/farmacologia , Chá de Kombucha/análise , Ácido Glucurônico/química , Humanos , Hepatopatias/prevenção & controle
16.
Materials (Basel) ; 13(6)2020 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-32168751

RESUMO

There is a strong public concern about plastic waste, which promotes the development of new biobased materials. The benefit of using microbial biomass for new developments is that it is a completely renewable source of polymers, which is not limited to climate conditions or may cause deforestation, as biopolymers come from vegetal biomass. The present review is focused on the use of microbial biomass and its derivatives as sources of biopolymers to form new materials. Yeast and fungal biomass are low-cost and abundant sources of biopolymers with high promising properties for the development of biodegradable materials, while milk and water kefir grains, composed by kefiran and dextran, respectively, produce films with very good optical and mechanical properties. The reasons for considering microbial cellulose as an attractive biobased material are the conformational structure and enhanced properties compared to plant cellulose. Kombucha tea, a probiotic fermented sparkling beverage, produces a floating membrane that has been identified as bacterial cellulose as a side stream during this fermentation. The results shown in this review demonstrated the good performance of microbial biomass to form new materials, with enhanced functional properties for different applications.

17.
Food Res Int ; 102: 690-699, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29196002

RESUMO

The aim of this study was to evaluate the anti-hyperglycemic and antioxidant effects of oak leaves infusions and fermented beverages from Quercus convallata and Q. arizonica in vitro and in vivo. Female C57BL/6 mice fed with high saturated fat and fructose diet-induced obesity were treated with oak leaves beverages (200 µL/per day equivalent to 15mg of lyophilized sample/Kg of body weight for infusions and 31mg of lyophilized sample/Kg of body weight for fermented beverages) for 3months and an oral glucose tolerance test (OGTT) was performed. Blood plasma was obtained for determination of glucose, lipid profile, and oxidative stress markers (ABTS, nitric oxide, and ORAC assays). Insulin resistance was estimated using the product of triglycerides and glucose (TyG). Oak leaves infusions and fermented beverages exhibited exerted inhibition of α-amylase (8-15% and 5-9%, respectively) and α-glucosidase (98% and 99%, respectively) enzymes. After OGTT, the groups treated with either oak leaves infusions or fermented beverages showed lower glucose levels compared with the obesity control group (18%) and a similar glucose tolerance to healthy control group. On long-term evaluation, intervention groups showed a significant reduction in fasting glucose concentrations (41-50% for oak leaves infusions and 52-66% for fermented beverages) and TyG index (4.2-4.6% for oak leaves infusions and 5.9-7.5% for fermented beverages) compared with the obese control group. Oak leaves infusions and fermented beverages had antioxidant potential in vitro and scavenging activity for radicals such as peroxyl and peroxynitrite anions. Our results suggest anti-hyperglycemic and antioxidant effects of beverages prepared with leaves of Quercus species in vitro and in vivo.


Assuntos
Antioxidantes/administração & dosagem , Alimentos Fermentados , Hipoglicemiantes/administração & dosagem , Extratos Vegetais/administração & dosagem , Folhas de Planta/química , Quercus , Animais , Bebidas , Glicemia/análise , Feminino , Sequestradores de Radicais Livres/análise , Teste de Tolerância a Glucose , Hiperglicemia/etiologia , Hiperglicemia/prevenção & controle , Resistência à Insulina , Lipídeos/sangue , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/sangue , Obesidade/complicações , Obesidade/etiologia , Estresse Oxidativo/efeitos dos fármacos , Fenóis/análise
18.
Chem Biol Interact ; 272: 1-9, 2017 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-28476604

RESUMO

Black tea infusion is the common substrate for preparing kombucha; however other sources such as oak leaves infusions can be used for the same purpose. Almost any white oak species have been used for medicinal applications by some ethnic groups in Mexico and could be also suitable for preparing kombucha analogues from oak (KAO). The objective of this research was to investigate the antioxidant activity and anti-inflammatory effects of KAO by examining its modulation ability on macrophage-derived TNF-alpha and IL-6. Herbal infusions from oak and black tea were fermented by kombucha consortium during seven days at 28 °C. Chemical composition was determined by LC-ESI-MS/MS. The antioxidant activity of samples against oxidative damage caused by H2O2 in monocytes activated (macrophages) was explored. Additionally, it was determined the anti-inflammatory activity using lipopolysaccharide (LPS) - stimulated macrophages; in particular, the nitric oxide (NO), TNF-alpha, and IL-6 production was assessed. Levels of pro-inflammatory cytokines IL-6 and TNF-alpha were significantly reduced by the sample treatment. Likewise, NO production was lower in treatment with kombucha and KAO compared with LPS-stimulated macrophages. Fermented beverages of oak effectively down-regulated the production of NO, while pro-inflammatory cytokines (TNF-alpha and IL-6) in macrophages were stimulated with LPS. Additionally, phytochemical compounds present in KAO decrease oxidative stress.


Assuntos
Anti-Inflamatórios/química , Antioxidantes/química , Quercus/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Regulação para Baixo/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/toxicidade , Interleucina-6/metabolismo , Lipopolissacarídeos/toxicidade , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Óxido Nítrico/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenóis/análise , Fenóis/química , Folhas de Planta/química , Folhas de Planta/metabolismo , Quercus/metabolismo , Espectrometria de Massas em Tandem , Chá/química , Chá/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
19.
Food Technol Biotechnol ; 54(3): 367-374, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27956869

RESUMO

Physicochemical properties, consumer acceptance, antioxidant and angiotensin-converting enzyme (ACE) inhibitory activities of infusions and fermented beverages of Eucalyptus camaldulensis and Litsea glaucescens were compared. Among physicochemical parameters, only the pH of fermented beverages decreased compared with the unfermented infusions. No relevant changes were reported in consumer preference between infusions and fermented beverages. Phenolic profile measured by UPLC MS/MS analysis demonstrated significant concentration changes of these compounds in plant infusions and fermented beverages. Fermentation induced a decrease in the concentration required to stabilize 50% of DPPH radical (i.e. lower IC50). Additionally, it enhanced the antioxidant activity measured by the nitric oxide scavenging assay (14% of E. camaldulensis and 49% of L. glaucescens); whereas relevant improvements in the fermented beverage were not observed in the lipid oxidation assay compared with unfermented infusions. The same behaviour was observed in the inhibitory activity of ACE; however, both infusions and fermented beverages had lower IC50 than positive control (captopril). The present study demonstrated that fermentation has an influence on the concentration of phenolics and their potential bioactivity. E. camaldulensis and L. glaucescens can be considered as natural sources of biocompounds with antihypertensive potential used either as infusions or fermented beverages.

20.
Braz. J. Microbiol. ; 46(4): 1245-1255, Oct.-Dec. 2015. tab, graf
Artigo em Inglês | VETINDEX | ID: vti-15182

RESUMO

Abstract The foot and mouth disease virus (FMDV) is sensitive to acids and can be inactivated by exposure to low pH conditions. Spraying animals at risk of infection with suspensions of acid-forming microorganisms has been identified as a potential strategy for preventing FMD. Kombucha is one of the most strongly acid-forming symbiotic probiotics and could thus be an effective agent with which to implement this strategy. Moreover, certain Chinese herbal extracts are known to have broad-spectrum antiviral effects. Chinese herbal kombucha can be prepared by fermenting Chinese herbal extracts with a kombucha culture. Previous studies demonstrated that Chinese herbal kombucha prepared in this way efficiently inhibits FMDV replication in vitro. To assess the inhibitory effects of Chinese herbal kombucha against FMDV in vitro, swine challenged by intramuscular injection with 1000 SID50 of swine FMDV serotype O strain O/China/99 after treatment with Chinese herbal kombucha were partially protected against infection, as demonstrated by a lack of clinical symptoms and qRT-PCR analysis. In a large scale field trial, spraying cattle in an FMD outbreak zone with kombucha protected against infection. Chinese herbal kombucha may be a useful probiotic agent for managing FMD outbreaks.(AU)


Assuntos
Medicamentos de Ervas Chinesas/administração & dosagem , Aphthovirus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA