Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
AoB Plants ; 15(4): plad007, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37426174

RESUMO

Goeppertella has been postulated as a monophyletic group, whose precise position within the Gleichenoid families Dipteriaceae and Matoniaceae, remains poorly understood. Previously described Goeppertella specimens are based on frond fragments and its fertile morphology is represented by a few, poorly preserved specimens. We describe a new species based on the largest collection of fertile specimens known to date and discuss the evolutionary history of the genus based on the additional reproductive characters provided by the fossils described. Plant impressions were collected in Early Jurassic sediments of Patagonia, Argentina. The specimens were described, and silicone rubber casts were developed to examine in detail vegetative and reproductive features. The new species was compared with other Goeppertella species. Finally, a backbone analysis was performed in the context of a previously published combined matrix of Dipteridaceae, using the maximum parsimony criterion. The new species is described based on a combination of features that have not been previously reported. The vegetative morphology shows affinities with most fossil and extant Dipteriaceae, contrasting with the reproductive morphology which is more comparable with the scarce number of fossil dipteridaceous forms and it is more spread in the sister family, Matoniaceae. The backbone analysis indicates that the position of the new species vary among different positions among Dipteridaceae and Matoniaceae. Additional analyses, discriminating the signal of reproductive and vegetative character, are provided to discuss the base of this uncertainty. We consider Goeppertella as a member of the family Dipteridaceae since we interpret most shared features with Matoniaceae as plesiomorphic conditions for the family. In contrast, most shared features with Dipteridaceae represent apomorphies for the group. Thus, Goeppertella would represent an early diverging genus in Dipteridaceae, considering the venation characters as the most important in order to define the family.

2.
PeerJ ; 10: e13739, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35935248

RESUMO

This contribution presents novel records of ray-finned fishes from the Oxfordian of Cerritos Bayos, northern Chile. This includes a Pachycormiformes diversity represented by macropredatory forms (aff. Hypsocormus sp. and a still indeterminate form) and by suspension-feeding forms (Leedsichthys sp). The assemblage also includes the first Upper Jurassic local record of a Lepisosteidae, the latter being the oldest known to date in Gondwana. This diversity is complemented by new material of the lepidotid genus Scheenstia. The ray-finned fish assemblage from the Oxfordian of Cerritos Bayos is dominated by Lepisosteiformes and Pachycormiformes, complementing previous local coeval records from El Profeta Formation (ca. 250 km south from the localities here studied), mostly comprised by small Teleostei (e.g., Protoclupea chilensis, Varasichthys ariasi, Chongichthys dentatus, among others), indeterminate Pachycormiformes and Pycnodontiformes (Gyrodus sp.). The new records extend the known actinopterygian diversity from the Upper Jurassic of southeastern Panthalassa.


Assuntos
Brassicaceae , Fósseis , Animais , Chile , Peixes
3.
Anat Rec (Hoboken) ; 305(10): 2604-2619, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-34125496

RESUMO

The evolution of Thalattosuchia documents the unique shift among Crocodylomorpha from aquatic continental/coastal habitats to a fully pelagic lifestyle. This transition was coupled with deep modification of their skeletons, such as hydrofoil forelimbs, hypocercal tail, and loss of osteoderms. The natural snout casts of the rhacheosaurin Cricosaurus araucanensis showed that it also included changes in the internal anatomy of the snout like the enlargement of nasal glands (probably for salt excretion) and the rearrangement of the paranasal sinus system, including the internalization of the antorbital sinus. Here we described the snout natural cast of the geosaurin Dakosaurus andiniensis from the Late Jurassic of Patagonia. The information provided by it indicates that, despite having different external morphologies and ecology, D. andiniensis and C. araucanensis share the same facial anatomy. The new cast preserves a suborbital diverticulum of the antorbital sinus protruding into the orbit through the postnasal fenestra. Its location indicates that it was interleaved with jaw adductor muscles suggesting an active airflow in the paranasal sinus. We provide a putative functional interpretation of this peculiar arrangement where bellow pumps actions of musculature may help drain salt glands. The rearrangement of the paranasal sinuses predates the transition to a completely pelagic-lifestyle. We proposed a stepwise evolutionary scenario of Thalattosuchia, implying changes in the preorbital region (and orbit orientation) where the internalized antorbital sinus via its subsidiary diverticulum was co-opted for helping nasal glands drainage. Further scrutiny of facial anatomy of a larger sample of thalattosuchians will help to test this hypothesis.


Assuntos
Divertículo , Seios Paranasais , Animais , Ecossistema , Seios Paranasais/anatomia & histologia , Crânio/anatomia & histologia
4.
J Anat ; 238(2): 400-415, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33026119

RESUMO

The notarium is the structure formed by fusion of the dorsal vertebrae which occurred independently in pterosaurs and birds. This ankylosis usually involves two to six elements and in many cases, also includes the last cervical vertebra. Fusion can occur in different degrees, uniting the vertebral centra, the neural spines, the transverse processes, the ventral processes, or a combination of these sites. A detailed assessment of the fusion process of pterosaur dorsal vertebrae is still lacking. Here we identify the fusion sequence of pterosaur notarial elements, demonstrating the order of ossification in vertebral bodies and neural spines based on fossils and extant birds. In both Pterosauria and Aves, the notarium generally develops in a antero-posterior direction, but the actual order of each fusion locus may present slight variations. Based on our data, we were able to identify seven developmental stages in the notarium formation, with broad implications for the prediction of ontogenetic stages for the Pterosauria. In addition, we report the occurrence of a notarium in Ardeadactylus longicollum (Kimmeridgian, Southern Germany), the oldest occurrence of this structure in pterosaurs.


Assuntos
Evolução Biológica , Dinossauros/crescimento & desenvolvimento , Coluna Vertebral/crescimento & desenvolvimento , Animais , Aves/anatomia & histologia , Aves/crescimento & desenvolvimento , Dinossauros/anatomia & histologia , Fósseis/anatomia & histologia , Coluna Vertebral/anatomia & histologia
5.
Biol Lett ; 13(8)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28814574

RESUMO

The enigmatic dinosaur taxon Chilesaurus diegosuarezi was originally described as a tetanuran theropod, but this species possesses a highly unusual combination of features that could provide evidence of alternative phylogenetic positions within the clade. In order to test the relationships of Chilesaurus, we added it to a new dataset of early dinosaurs and other dinosauromorphs. Our analyses recover Chilesaurus in a novel position, as the earliest diverging member of Ornithischia, rather than a tetanuran theropod. The basal position of Chilesaurus within the clade and its suite of anatomical characters suggest that it might represent a 'transitional' taxon, bridging the morphological gap between Theropoda and Ornithischia, thereby offering potential insights into the earliest stages of ornithischian evolution, which were previously obscure. For example, our results suggest that pubic retroversion occurred prior to some of the craniodental and postcranial modifications that previously diagnosed the clade (e.g. the presence of a predentary bone and ossified tendons).


Assuntos
Dinossauros , Animais , Evolução Biológica , Osso e Ossos , Fósseis , Filogenia
6.
Mol Phylogenet Evol ; 113: 59-66, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28501611

RESUMO

Despite their complex evolutionary history and the rich fossil record, the higher level phylogeny and historical biogeography of living turtles have not been investigated in a comprehensive and statistical framework. To tackle these issues, we assembled a large molecular dataset, maximizing both taxonomic and gene sampling. As different models provide alternative biogeographical scenarios, we have explicitly tested such hypotheses in order to reconstruct a robust biogeographical history of Testudines. We scanned publicly available databases for nucleotide sequences and composed a dataset comprising 13 loci for 294 living species of Testudines, which accounts for all living genera and 85% of their extant species diversity. Phylogenetic relationships and species divergence times were estimated using a thorough evaluation of fossil information as calibration priors. We then carried out the analysis of historical biogeography of Testudines in a fully statistical framework. Our study recovered the first large-scale phylogeny of turtles with well-supported relationships following the topology proposed by phylogenomic works. Our dating result consistently indicated that the origin of the main clades, Pleurodira and Cryptodira, occurred in the early Jurassic. The phylogenetic and historical biogeographical inferences permitted us to clarify how geological events affected the evolutionary dynamics of crown turtles. For instance, our analyses support the hypothesis that the breakup of Pangaea would have driven the divergence between the cryptodiran and pleurodiran lineages. The reticulated pattern in the ancestral distribution of the cryptodiran lineage suggests a complex biogeographic history for the clade, which was supposedly related to the complex paleogeographic history of Laurasia. On the other hand, the biogeographical history of Pleurodira indicated a tight correlation with the paleogeography of the Gondwanan landmasses.


Assuntos
Filogenia , Filogeografia , Tartarugas/classificação , Animais , Biodiversidade , Calibragem , Fósseis , Fatores de Tempo
7.
PeerJ ; 5: e2801, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28133565

RESUMO

BACKGROUND: Macelognathus vagans Marsh, 1884 from the Late Jurassic Morrison Fm. of Wyoming was originally described as a dinosaur by Marsh and in 1971 Ostrom suggested crocodilian affinities. In 2005, Göhlich and collaborators identified new material of this species from Colorado as a basal crocodylomorph. However, a partial skull found in association with mandibular and postcranial remains was not described. METHODS: Due to the small size and delicate structures within the braincase, micro CT studies were performed on this specimen. The new anatomical information was incorporated in a phylogenetic dataset, expanding both character and taxon sampling. RESULTS: This new material reinforces the non-crocodyliform crocodylomorph affinities of Macelognathusas it bears a large otic aperture, unfused frontals and lacks ornamentation on the dorsal cranial bones. The internal structures also support these affinities as this specimen bears traits (i.e., heavily pneumatized and expanded basisphenoid; the presence of additional pneumatic features on the braincase; and the otoccipital-quadrate contact) not present in most basal crocodylomorphs. Furthermore, the presence of a wide supraoccipital and a cranioquadrate passage are traits shared with Almadasuchus from the early Late Jurassic of Argentina. Macelognathus was recovered as one of the closest relatives of crocodyliforms, forming a clade (Hallopodidae) with two other Late Jurassic taxa (Almadasuchus and Hallopus). DISCUSSION: The clade formed by Almadasuchus + Hallopus + Macelognathus, the Hallopodidae, is characterized by a higher degree of suturing of the braincase, posteriorly closed otic aperture (paralleled in mesoeucrocodylians) and cursorial adaptations. Also, the phylogenetic position of this lineage of derived crocodylomorphs as the sister group of Crocodyliformes implies a large amount of unsampled record (ghost lineage), at least 50 million years.

8.
PeerJ ; 4: e2311, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27635315

RESUMO

Pterosaurs are an extinct group of highly modified flying reptiles that thrived during the Mesozoic. This group has unique and remarkable skeletal adaptations to powered flight, including pneumatic bones and an elongate digit IV supporting a wing-membrane. Two major body plans have traditionally been recognized: the primitive, primarily long-tailed paraphyletic "rhamphorhynchoids" (preferably currently recognized as non-pterodactyloids) and the derived short-tailed pterodactyloids. These two groups differ considerably in their general anatomy and also exhibit a remarkably different neuroanatomy and inferred head posture, which has been linked to different lifestyles and behaviours and improved flying capabilities in these reptiles. Pterosaur neuroanatomy, is known from just a few three-dimensionally preserved braincases of non-pterodactyloids (as Rhamphorhynchidae) and pterodactyloids, between which there is a large morphological gap. Here we report on a new Jurassic pterosaur from Argentina, Allkaruen koi gen. et sp. nov., remains of which include a superbly preserved, uncrushed braincase that sheds light on the origins of the highly derived neuroanatomy of pterodactyloids and their close relatives. A µCT ray-generated virtual endocast shows that the new pterosaur exhibits a mosaic of plesiomorphic and derived traits of the inner ear and neuroanatomy that fills an important gap between those of non-monofenestratan breviquartossans (Rhamphorhynchidae) and derived pterodactyloids. These results suggest that, while modularity may play an important role at one anatomical level, at a finer level the evolution of structures within a module may follow a mosaic pattern.

9.
Proc Biol Sci ; 281(1791): 20141147, 2014 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-25100698

RESUMO

Current characterizations of early dinosaur evolution are incomplete: existing palaeobiological and phylogenetic scenarios are based on a fossil record dominated by saurischians and the implications of the early ornithischian record are often overlooked. Moreover, the timings of deep phylogenetic divergences within Dinosauria are poorly constrained owing to the absence of a rigorous chronostratigraphical framework for key Late Triassic-Early Jurassic localities. A new dinosaur from the earliest Jurassic of the Venezuelan Andes is the first basal ornithischian recovered from terrestrial deposits directly associated with a precise radioisotopic date and the first-named dinosaur from northern South America. It expands the early palaeogeographical range of Ornithischia to palaeoequatorial regions, an area sometimes thought to be devoid of early dinosaur taxa, and offers insights into early dinosaur growth rates, the evolution of sociality and the rapid tempo of the global dinosaur radiation following the end-Triassic mass extinction, helping to underscore the importance of the ornithischian record in broad-scale discussions of early dinosaur history.


Assuntos
Evolução Biológica , Dinossauros/anatomia & histologia , Dinossauros/classificação , Fósseis/anatomia & histologia , Animais , Sedimentos Geológicos , Filogenia , Venezuela
10.
R Soc Open Sci ; 1(2): 140184, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26064540

RESUMO

Dinosaur skeletal remains are almost unknown from northern South America. One of the few exceptions comes from a small outcrop in the northernmost extension of the Andes, along the western border of Venezuela, where strata of the La Quinta Formation have yielded the ornithischian Laquintasaura venezuelae and other dinosaur remains. Here, we report isolated bones (ischium and tibia) of a small new theropod, Tachiraptor admirabilis gen. et sp. nov., which differs from all previously known members of the group by an unique suite of features of its tibial articulations. Comparative/phylogenetic studies place the new form as the sister taxon to Averostra, a theropod group that is known primarily from the Middle Jurassic onwards. A new U-Pb zircon date (isotope dilution thermal-ionization mass spectrometry; ID-TIMS method) from the bone bed matrix suggests an earliest Jurassic maximum age for the La Quinta Formation. A dispersal-vicariance analysis suggests that such a stratigraphic gap is more likely to be filled by new records from north and central Pangaea than from southern areas. Indeed, our data show that the sampled summer-wet equatorial belt, which yielded the new taxon, played a pivotal role in theropod evolution across the Triassic-Jurassic boundary.

11.
Biol Rev Camb Philos Soc ; 88(4): 862-72, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23445256

RESUMO

Extant crocodylians have a limited taxonomic and ecological diversity but they belong to a lineage (Crocodylomorpha) that includes basal and rather generalized species and a highly diverse clade, Crocodyliformes. The latter was among the most successful groups of Mesozoic tetrapods, both in terms of taxonomic and ecological diversity. Crocodyliforms thrived in terrestrial, semiaquatic, and marine environments, and their fossil diversity includes carnivorous, piscivorous, insectivorous, and herbivorous species. This remarkable ecological and trophic diversity is thought only to occur in forms with a completely akinetic skull, characterized by a functionally integrated and tightly sutured braincase-quadrate-palate complex. However, the patterns of evolutionary change that led to the highly modified skull of crocodyliforms and that likely enabled their diversification remain poorly understood. Herein, a new basal crocodylomorph from the Late Jurassic of Patagonia is described, Almadasuchus figarii gen. et sp. nov. The new taxon is known from a well-preserved posterior region of the skull as well as other craniomandibular and postcranial remains. Almadasuchus figarii differs from all other crocodylomorphs in the presence of six autapomorphic features, including the presence of a large lateral notch on the upper temporal bar, an otic shelf of the squamosal that is wider than long, a deep subtriangular concavity on the posterolateral surface of the squamosal, and an elongated pneumatopore on the ventral surface of the quadrate. Phylogenetic analysis focused on the origin of Crocodyliformes places Almadasuchus as the sister group of Crocodyliformes, supported by synapomorphic features of the skull (e.g. subtriangular basisphenoid, absence of basipterygoid process, absence of a sagittal ridge on the frontal, and a flat anterior skull roof with an ornamented dorsal surface). New braincase information provided by Almadasuchus and other crocodylomorphs indicates that most of the modifications on the posterior region of the skull of crocodyliforms, including the strongly sutured braincase, quadrate, and the extensive secondary palate appeared in a stepwise manner, and pre-dated the evolutionary changes in the snout, jaws, and dentition. This indicates that the progressively increased rigidity of the skull provided the structural framework that allowed the great ecological diversification of crocodyliforms during the course of the Mesozoic. The phylogenetic pattern of character acquisition inferred for the strongly sutured (akinetic) skull and the appearance of more diverse feeding behaviours that create high mechanical loads on the skull provides another interesting parallel between the evolution of Mesozoic crocodyliforms and the evolutionary origins of mammals.


Assuntos
Evolução Biológica , Fósseis/anatomia & histologia , Répteis/anatomia & histologia , Répteis/classificação , Crânio/anatomia & histologia , Animais , Argentina , Filogenia
12.
An. acad. bras. ciênc ; 83(1): 23-60, Mar. 2011. ilus, tab
Artigo em Inglês | LILACS | ID: lil-578285

RESUMO

The record of dinosaur body-fossils in the Brazilian Mesozoic is restricted to the Triassic of Rio Grande do Sul and Cretaceous of various parts of the country. This includes 21 named species, two of which were regarded as nomina dubia, and 19 consensually assigned to Dinosauria. Additional eight supraspecific taxa have been identified based on fragmentary specimens and numerous dinosaur footprints known in Brazil. In fact, most Brazilian specimens related to dinosaurs are composed of isolated teeth and vertebrae. Despite the increase of fieldwork during the last decade, there are still no dinosaur body-fossils of Jurassic age and the evidence of ornithischians in Brazil is very limited. Dinosaur faunas from this country are generally correlated with those from other parts of Gondwana throughout the Mesozoic. During the Late Triassic, there is a close correspondence to Argentina and other south-Pangaea areas. Mid-Cretaceous faunas of northeastern Brazil resemble those of coeval deposits of North Africa and Argentina. Southern hemisphere spinosaurids are restricted to Africa and Brazil, whereas abelisaurids are still unknown in the Early Cretaceous of the latter. Late Cretaceous dinosaur assemblages of south-central Brazil are endemic only to genus or, more conspicuously, to species level, sharing closely related taxa with Argentina, Madagascar, Indo-Pakistan and, to a lesser degree, continental Africa.


O registro osteológico de dinossauros no Mesozóico brasileiro está restrito a rochas triássicas do Rio Grande do Sul e estratos cretáceos de várias partes do país. Isto inclui 21 espécies nominais, sendo duas referidas como nomina dubia, e 19 consensualmente classificadas como dinossauros. Oito táxons supraespecíficos adicionais baseados em material fragmentado e diversas pegadas são conhecidos no Brasil. De fato, a maior parte dos espécimes é composta de dentes isolados e vértebras. Apesar do aumento em trabalhos de campo na última década, não há exemplar esqueletal de dinossauro no Jurássico brasileiro, e é escassa a evidência de Ornithischia. Faunas dinossaurianas aqui registradas são em geral correlatas com aquelas da Pangéia durante o Mesozóico. No Triássico Superior, há uma correspondência próxima com a Argentina e outras regiões sul-gondwânicas. Faunas do Cretáceo médio do nordeste brasileiro são semelhantes às dos depósitos coevos do norte da África e Argentina. Registros de espinossaurídeos no hemisfério sul estão restritos à África e Brasil, enquanto abelissaurídeos não são conhecidos no Cretáceo Inferior deste último. Assembleias de dinossauros da região sul e central do Brasil são endêmicas apenas em nível de gênero e, mais conspicuamente, espécie, compartilhando táxons proximamente relacionados com assembleias da Argentina, Indo-Paquistão, e, num menor grau, África continental.


Assuntos
Animais , Dinossauros/classificação , Paleontologia , Filogeografia , Brasil , Fósseis
13.
An. acad. bras. ciênc ; 81(4): 793-812, Dec. 2009. ilus, mapas, tab
Artigo em Inglês | LILACS | ID: lil-529938

RESUMO

A new long-tailed pterosaur, Wukongopterus lii gen. et sp. nov, is described based on an almost complete skeleton (IVPP V15113) representing an individual with an estimated wing span of 730 mm. The specimen was discovered in strata that possibly represent the Daohugou Bed (or Daohugou Formation) at Linglongta, Jianchang, Liaoning Province, China. Wukongopterus lii is a non-pterodactyloid pterosaur diagnosed by the first two pairs of premaxillary teeth protruding beyond the dentary, elongated cervical vertebrae (convergent with Pterodactyloidea), and a strongly curved second pedal phalanx of the fifth toe. The specimen further has a broken tibia that indicates an injury occurred while the individual was still alive. Taphonomic aspects provide indirect evidence of an uropatagium, supporting the general hypothesis that at least all non-pterodactyloid pterosaurs show a membrane between the hind limbs. A phylogenetic analysis including most non-pterodactyloid pterosaurs shows that Wukongopterus lii gen. et sp. nov. lies outside the Novialoidea, being cladistically more primitive than the Rhamphorhynchidae and Capylognathoides. This analysis differs from previous studies and indicates that more work is needed before a stable picture of non-pterodactyloid pterosaur relationships is achieved.


Um novo pterossauro de cauda longa, Wukongopterus lii gen. et sp. nov., é descrito baseado em um esqueleto quase completo (IVPP V15113) de um indivíduo com abertura alar estimada em 730 mm. O exemplar foi encontrado nas camadas Daohugou (ou Formação Daohugou) em Linglongta, Jianchang, Província de Liaoning, China. Wukongopterus lii é um pterossauro não-pterodactilóide diagnosticado pela presença de dois pares de dentes pré-maxilares posicionados antes do início do dentário, vertebras cervicais alongadas (convergente com os Pterodactyloidea) e a segunda falange do quinto dígito do pé fortemente curvada. Este espécime também apresenta uma tíbia quebrada indicando que a quebra ocorreu com o animal em vida. Evidências tafonômicas apresentam dados indiretos da presença de um uropatágio, corroborando com a hipótese de que pelo menos os não-pterodactilóides possuíam uma membrana entre os seus membros posteriores. Uma análise filogenética incluindo vários pterossauros não-pterodactilóides resulta no posicionamento de Wukongopterus lii gen. et sp. nov. fora dos Novialoidea, sendo cladisticamente mais primitivo do que os Rhamphorhynchidae e Campylognathoides. Esta nova análise filogenética difere de resultados anteriores, indicando que mais trabalhos são necessários até que uma estabilidade da relação de parentesco entre os pterossauros não-pterodactilóides seja alcançada.


Assuntos
Animais , Dinossauros/anatomia & histologia , Fósseis , China , Dinossauros/classificação , Filogenia
14.
An. acad. bras. ciênc ; 81(4): 813-818, Dec. 2009. ilus, mapas, tab
Artigo em Inglês | LILACS | ID: lil-529939

RESUMO

Jurassic African pterosaur remains are exceptionally rare and only known from the Tendaguru deposits, Upper Jurassic, Tanzania. Here we describe two right humeri of Tendaguru pterosaurs from the Humboldt University of Berlin: specimens MB.R. 2828 (cast MN 6661-V) and MB.R. 2833 (cast MN 6666-V). MB.R. 2828 consists of a three-dimensionally preserved proximal portion. The combination of the morphological features of the deltopectoral crest not observed in other pterosaurs suggests that this specimen belongs to a new dsungaripteroid taxon. MB.R. 2833 is nearly complete, and because of a long and round proximally placed deltopectoral crest it could be referred to the Archaeopterodactyloidea. It is the smallest pterosaur from Africa and one of the smallest flying reptiles ever recorded. These specimens confirm the importance of the Tendaguru deposits for the Jurassic pterosaur record. This potential, however, has to be fully explored with more field work.


Fragmentos de pterossauros africanos do Jurássico são excepcionalmente raros e conhecidos apenas dos depósitos de Tendaguru, Jurássico Superior, Tanzânia. Este estudo descreve dois úmeros direitos de pterossauros de Tendaguru depositados na Universidade Humboldt de Berlim: espécimes MB.R. 2828 (réplica MN 6661-V) e MB.R. 2833 (réplicaMN 6666-V). MB.R. 2828 consiste em uma porção proximal com preservação tridimensional. Características morfológicas combinadas da crista deltopeitoral não observadas em outros pterossauros sugerem que este espécime pertença a um novo táxon dsungaripteróide. B.R. 2833 é quase completo e, por causa da sua crista deltopeitoral extensa e arredondada, posicionada proximalmente, pode ser associado a Archaeopterodactyloidea. De qualquer forma, este é o menor pterossauro da África e um dos menores já registrados. Estes espécimes corroboram a importância dos depósitos de Tendaguru para registros de pterossauros jurássicos. Este potencial, no entanto, deve ser mais amplamente explorado com um maior número de trabalhos de campo.


Assuntos
Animais , Dinossauros/anatomia & histologia , Fósseis , Úmero/anatomia & histologia , Dinossauros/classificação , Tanzânia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA