Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Life Sci ; 350: 122750, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38801982

RESUMO

C-Jun-N-terminal-kinases (JNKs), members of the mitogen-activated-protein-kinase family, are significantly linked with neurological and neurodegenerative pathologies and cancer progression. However, JNKs serve key roles under physiological conditions, particularly within the central-nervous-system (CNS), where they are critical in governing neural proliferation and differentiation during both embryogenesis and adult stages. These processes control the development of CNS, avoiding neurodevelopment disorders. JNK are key to maintain the proper activity of neural-stem-cells (NSC) and neural-progenitors (NPC) that exist in adults, which keep the convenient brain plasticity and homeostasis. This review underscores how the interaction of JNK with upstream and downstream molecules acts as a regulatory mechanism to manage the self-renewal capacity and differentiation of NSC/NPC during CNS development and in adult neurogenic niches. Evidence suggests that JNK is reliant on non-canonical Wnt components, Fbw7-ubiquitin-ligase, and WDR62-scaffold-protein, regulating substrates such as transcription factors and cytoskeletal proteins. Therefore, understanding which pathways and molecules interact with JNK will bring knowledge on how JNK activation orchestrates neuronal processes that occur in CNS development and brain disorders.


Assuntos
Diferenciação Celular , Células-Tronco Neurais , Neurogênese , Humanos , Animais , Diferenciação Celular/fisiologia , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/citologia , Neurogênese/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Neurônios/metabolismo , Neurônios/citologia
2.
Chem Biol Interact ; 345: 109563, 2021 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-34166651

RESUMO

Streptozotocin exhibits tropism to insulin-producing beta-cells in mammals and has been used to model diabetes-like phenotypes in insects. We have previously shown increased brain glucose levels and oxidative stress in STZ-treated nymphs of Nauphoeta cinerea. Here, we validate Nauphoeta cinerea as an experimental organism for studying STZ-induced metabolic disruptions by investigating the potential changes in the expression of inflammation and antioxidant related genes. Cockroaches were injected with 0.8% NaCl, 74 and 740 nmol of STZ. mRNA extracted from the head of cockroaches was used to estimate the RT-qPCR expression of inflammation and antioxidant genes. STZ-treatment upregulated the target genes of the JNK pathway (early growth factor response factor and reaper) but had no effect on PDGF-and VEGF-related factor 1. TOLL 1, the target gene of TOLL/NF-kB pathway was up regulated, while both the activator and target gene of the UPD3/JAK/STAT pathway [unpaired 3 and Suppressor of cytokine signalling at 36E] were upregulated. mRNA levels of primary antioxidants (superoxide dismutase and catalase) were increased in STZ treated nymphs but there was no effect on thioredoxins and Peroxiredoxin 4. Likewise, STZ treatment did not affect the expression of the delta class of the glutathione S-transferase gene family, but the sigma and theta classes of the GST family were upregulated. The STZ-induced N. cinerea gene expression modification demonstrates the involvement of primary antioxidants and the GST detoxification system in the cockroach oxidative stress response and buttresses the proposed crosstalk between inflammatory and redox pathways.


Assuntos
Antioxidantes/metabolismo , Baratas , Transdução de Sinais/efeitos dos fármacos , Estreptozocina/farmacologia , Animais , Citocinas/metabolismo , Relação Dose-Resposta a Droga , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , NF-kappa B/metabolismo , RNA Mensageiro/genética , Regulação para Cima/efeitos dos fármacos
3.
Rev. bras. pesqui. méd. biol ; Braz. j. med. biol. res;51(6): e7061, 2018. graf
Artigo em Inglês | LILACS | ID: biblio-889105

RESUMO

Andrographolide (ANDRO) has been studied for its immunomodulation, anti-inflammatory, and neuroprotection effects. Because brain hypoxia is the most common factor of secondary brain injury after traumatic brain injury, we studied the role and possible mechanism of ANDRO in this process using hypoxia-injured astrocytes. Mouse cortical astrocytes C8-D1A (astrocyte type I clone from C57/BL6 strains) were subjected to 3 and 21% of O2 for various times (0-12 h) to establish an astrocyte hypoxia injury model in vitro. After hypoxia and ANDRO administration, the changes in cell viability and apoptosis were assessed using CCK-8 and flow cytometry. Expression changes in apoptosis-related proteins, autophagy-related proteins, main factors of JNK pathway, ATG5, and S100B were determined by western blot. Hypoxia remarkably damaged C8-D1A cells evidenced by reduction of cell viability and induction of apoptosis. Hypoxia also induced autophagy and overproduction of S100B. ANDRO reduced cell apoptosis and promoted cell autophagy and S100B expression. After ANDRO administration, autophagy-related proteins, S-100B, JNK pathway proteins, and ATG5 were all upregulated, while autophagy-related proteins and s100b were downregulated when the jnk pathway was inhibited or ATG5 was knocked down. ANDRO conferred a survival advantage to hypoxia-injured astrocytes by reducing cell apoptosis and promoting autophagy and s100b expression. Furthermore, the promotion of autophagy and s100b expression by ANDRO was via activation of jnk pathway and regulation of ATG5.


Assuntos
Animais , Camundongos , Astrócitos/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Hipóxia Celular/efeitos dos fármacos , Diterpenos/farmacologia , Subunidade beta da Proteína Ligante de Cálcio S100/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Astrócitos/fisiologia , Western Blotting , Sobrevivência Celular/efeitos dos fármacos , Reação em Cadeia da Polimerase em Tempo Real , Subunidade beta da Proteína Ligante de Cálcio S100/metabolismo , Fatores de Tempo , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA