Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Tree Physiol ; 40(5): 637-651, 2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32083285

RESUMO

Photosynthetic carbon uptake by tropical forests is of critical importance in regulating the earth's climate, but rising temperatures threaten this stabilizing influence of tropical forests. Most research on how temperature affects photosynthesis focuses on fully sun-exposed leaves, and little is known about shade leaves, even though shade leaves greatly outnumber sun leaves in lowland tropical forests. We measured temperature responses of light-saturated photosynthesis, stomatal conductance, and the biochemical parameters VCMax (maximum rate of RuBP carboxylation) and JMax (maximum rate of RuBP regeneration, or electron transport) on sun and shade leaves of mature tropical trees of three species in Panama. As expected, biochemical capacities and stomatal conductance were much lower in shade than in sun leaves, leading to lower net photosynthesis rates. However, the key temperature response traits of these parameters-the optimum temperature (TOpt) and the activation energy-did not differ systematically between sun and shade leaves. Consistency in the JMax to VCMax ratio further suggested that shade leaves are not acclimated to lower temperatures. For both sun and shade leaves, stomatal conductance had the lowest temperature optimum (~25 °C), followed by net photosynthesis (~30 °C), JMax (~34 °C) and VCMax (~38 °C). Stomatal conductance of sun leaves decreased more strongly with increasing vapor pressure deficit than that of shade leaves. Consistent with this, modeled stomatal limitation of photosynthesis increased with increasing temperature in sun but not shade leaves. Collectively, these results suggest that modeling photosynthetic carbon uptake in multi-layered canopies does not require independent parameterization of the temperature responses of the biochemical controls over photosynthesis of sun and shade leaves. Nonetheless, to improve the representation of the shade fraction of carbon uptake dynamics in tropical forests, better understanding of stomatal sensitivity of shade leaves to temperature and vapor pressure deficit will be required.


Assuntos
Fotossíntese , Árvores , Dióxido de Carbono , Panamá , Folhas de Planta , Temperatura
2.
Ecology ; 98(11): 2978, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28833038

RESUMO

Leaf canopy carbon exchange processes, such as photosynthesis and respiration, are substantial components of the global carbon cycle. Climate models base their simulations of photosynthesis and respiration on an empirical understanding of the underlying biochemical processes, and the responses of those processes to environmental drivers. As such, data spanning large spatial scales are needed to evaluate and parameterize these models. Here, we present data on four important biochemical parameters defining leaf carbon exchange processes from 626 individuals of 98 species at 12 North and Central American sites spanning ~53° of latitude. The four parameters are the maximum rate of Rubisco carboxylation (Vcmax ), the maximum rate of electron transport for the regeneration of Ribulose-1,5,-bisphosphate (Jmax ), the maximum rate of phosphoenolpyruvate carboxylase carboxylation (Vpmax ), and leaf dark respiration (Rd ). The raw net photosynthesis by intercellular CO2 (A/Ci ) data used to calculate Vcmax , Jmax , and Vpmax rates are also presented. Data were gathered on the same leaf of each individual (one leaf per individual), allowing for the examination of each parameter relative to others. Additionally, the data set contains a number of covariates for the plants measured. Covariate data include (1) leaf-level traits (leaf mass, leaf area, leaf nitrogen and carbon content, predawn leaf water potential), (2) plant-level traits (plant height for herbaceous individuals and diameter at breast height for trees), (3) soil moisture at the time of measurement, (4) air temperature from nearby weather stations for the day of measurement and each of the 90 d prior to measurement, and (5) climate data (growing season mean temperature, precipitation, photosynthetically active radiation, vapor pressure deficit, and aridity index). We hope that the data will be useful for obtaining greater understanding of the abiotic and biotic determinants of these important biochemical parameters and for evaluating and improving large-scale models of leaf carbon exchange.


Assuntos
Carbono/metabolismo , Folhas de Planta/metabolismo , Dióxido de Carbono , América Central , Fotossíntese , Ribulose-Bifosfato Carboxilase , Árvores
3.
Plant Sci ; 214: 74-87, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24268165

RESUMO

The inactivation of the chloroplast ascorbate peroxidases (chlAPXs) has been thought to limit the efficiency of the water-water cycle and photo-oxidative protection under stress conditions. In this study, we have generated double knockdown rice (Oryza sativa L.) plants in both OsAPX7 (sAPX) and OsAPX8 (tAPX) genes, which encode chloroplastic APXs (chlAPXs). By employing an integrated approach involving gene expression, proteomics, biochemical and physiological analyses of photosynthesis, we have assessed the role of chlAPXs in the regulation of the protection of the photosystem II (PSII) activity and CO2 assimilation in rice plants exposed to high light (HL) and methyl violagen (MV). The chlAPX knockdown plants were affected more severely than the non-transformed (NT) plants in the activity and structure of PSII and CO2 assimilation in the presence of MV. Although MV induced significant increases in pigment content in the knockdown plants, the increases were apparently not sufficient for protection. Treatment with HL also caused generalized damage in PSII in both types of plants. The knockdown and NT plants exhibited differences in photosynthetic parameters related to efficiency of utilization of light and CO2. The knockdown plants overexpressed other antioxidant enzymes in response to the stresses and increased the GPX activity in the chloroplast-enriched fraction. Our data suggest that a partial deficiency of chlAPX expression modulate the PSII activity and integrity, reflecting the overall photosynthesis when rice plants are subjected to acute oxidative stress. However, under normal growth conditions, the knockdown plants exhibit normal phenotype, biochemical and physiological performance.


Assuntos
Ascorbato Peroxidases/genética , Proteínas de Cloroplastos/genética , Oryza/genética , Estresse Oxidativo/fisiologia , Fotossíntese/genética , Proteínas de Plantas/genética , Ascorbato Peroxidases/metabolismo , Proteínas de Cloroplastos/metabolismo , Eletroforese em Gel Bidimensional , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Regulação Enzimológica da Expressão Gênica/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Herbicidas/farmacologia , Isoenzimas/genética , Isoenzimas/metabolismo , Luz , Oryza/efeitos dos fármacos , Oryza/efeitos da radiação , Estresse Oxidativo/efeitos da radiação , Paraquat/farmacologia , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Espectrometria de Massas por Ionização por Electrospray
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA