Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Insect Sci ; 20(6)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33135755

RESUMO

Arthropods pests are most frequently associated with both plants and vertebrate animals. Ticks, in particular the blacklegged ticks Ixodes scapularis Say and Ixodes pacificus Cooley & Kohls (Acari: Ixodidae), are associated with wildlife hosts and are the primary vectors of Lyme disease, the most frequently reported vector-borne disease in the United States. Immature blacklegged ticks in the eastern United States frequently use small mammals from the genus Peromyscus as hosts. These mice are competent reservoirs for Borrelia burgdorferi, the causative agent of Lyme disease, as well as other tick-borne pathogens. To conduct surveillance on immature ticks and pathogen circulation in hosts, capture and handling of these small mammals is required. While protocols for rearing and pest surveillance on plants are common, there are very few protocols aimed at entomologists to conduct research on vertebrate-arthropod relationships. The goal of this manuscript is to provide a practical template for trapping Peromyscus spp. for vector and vector-borne pathogen surveillance and ecology for professionals that may not have a background in wildlife research. Important considerations are highlighted when targeting P. leucopus Rafinesque and P. maniculatus Wagner. Specifically, for tick and tick-borne disease-related projects, materials that may be required are suggested and references and other resources for researchers beginning a trapping study are provided.


Assuntos
Vetores Aracnídeos , Reservatórios de Doenças , Ixodidae , Doença de Lyme/microbiologia , Parasitologia/métodos , Peromyscus , Manejo de Espécimes/veterinária , Animais , Reservatórios de Doenças/microbiologia , Entomologia/métodos , Pennsylvania , Manejo de Espécimes/métodos , Doenças Transmitidas por Carrapatos/microbiologia
2.
J Med Entomol ; 57(3): 927-932, 2020 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-31819966

RESUMO

The white-footed mouse, Peromyscus leucopus (Rafinesque), is a reservoir for the Lyme disease spirochete Borrelia burgdorferi sensu stricto in the eastern half of the United States, where the blacklegged tick, Ixodes scapularis Say (Acari: Ixodidae), is the primary vector. In the Midwest, an additional Lyme disease spirochete, Borrelia mayonii, was recorded from naturally infected I. scapularis and P. leucopus. However, an experimental demonstration of reservoir competence was lacking for a natural tick host. We therefore experimentally infected P. leucopus with B. mayonii via I. scapularis nymphal bites and then fed uninfected larvae on the mice to demonstrate spirochete acquisition and passage to resulting nymphs. Of 23 mice fed on by B. mayonii-infected nymphs, 21 (91%) developed active infections. The infection prevalence for nymphs fed as larvae on these infected mice 4 wk post-infection ranged from 56 to 98%, and the overall infection prevalence for 842 nymphs across all 21 P. leucopus was 75% (95% confidence interval, 72-77%). To assess duration of infectivity, 10 of the P. leucopus were reinfested with uninfected larval ticks 12 wk after the mice were infected. The overall infection prevalence for 480 nymphs across all 10 P. leucopus at the 12-wk time point was 26% (95% confidence interval, 23-31%), when compared with 76% (95% confidence interval, 71-79%) for 474 nymphs from the same subset of 10 mice at the 4-wk time point. We conclude that P. leucopus is susceptible to infection with B. mayonii via bite by I. scapularis nymphs and an efficient reservoir for this Lyme disease spirochete.


Assuntos
Vetores Aracnídeos/microbiologia , Reservatórios de Doenças , Ixodes/microbiologia , Doença de Lyme/transmissão , Peromyscus/microbiologia , Spirochaetales/fisiologia , Animais , Vetores Aracnídeos/crescimento & desenvolvimento , Infecções por Borrelia/transmissão , Ixodes/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Larva/microbiologia , Ninfa/crescimento & desenvolvimento , Ninfa/microbiologia , Peromyscus/parasitologia
3.
Int J Parasitol ; 44(6): 369-79, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24583183

RESUMO

Ixodes scapularis is a medically important tick species that transmits causative agents of important human tick-borne diseases including borreliosis, anaplasmosis and babesiosis. An understanding of how this tick feeds is needed prior to the development of novel methods to protect the human population against tick-borne disease infections. This study characterizes a blood meal-induced I. scapularis (Ixsc) tick saliva serine protease inhibitor (serpin (S)), in-house referred to as IxscS-1E1. The hypothesis that ticks use serpins to evade the host's defense response to tick feeding is based on the assumption that tick serpins inhibit functions of protease mediators of the host's anti-tick defense response. Thus, it is significant that consistent with hallmark characteristics of inhibitory serpins, Pichia pastoris-expressed recombinant IxscS-1E1 (rIxscS-1E1) can trap thrombin and trypsin in SDS- and heat-stable complexes, and reduce the activity of the two proteases in a dose-responsive manner. Additionally, rIxscS-1E1 also inhibited, but did not apparently form detectable complexes with, cathepsin G and factor Xa. Our data also show that rIxscS-1E1 may not inhibit chymotrypsin, kallikrein, chymase, plasmin, elastase and papain even at a much higher rIxscS-1E1 concentration. Native IxscS-1E1 potentially plays a role(s) in facilitating I. scapularis tick evasion of the host's hemostatic defense as revealed by the ability of rIxscS-1E1 to inhibit adenosine diphosphate- and thrombin-activated platelet aggregation, and delay activated partial prothrombin time and thrombin time plasma clotting in a dose-responsive manner. We conclude that native IxscS-1E1 is part of the tick saliva protein complex that mediates its anti-hemostatic, and potentially inflammatory, functions by inhibiting the actions of thrombin, trypsin and other yet unknown trypsin-like proteases at the tick-host interface.


Assuntos
Coagulação Sanguínea/efeitos dos fármacos , Ixodes/enzimologia , Agregação Plaquetária/efeitos dos fármacos , Serpinas/metabolismo , Trombina/antagonistas & inibidores , Tripsina/metabolismo , Animais , Clonagem Molecular , Expressão Gênica , Humanos , Dados de Sequência Molecular , Pichia/genética , Saliva/enzimologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA