Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(31): 44374-44384, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949732

RESUMO

The presence of phenazopyridine in water is an environmental problem that can cause damage to human health and the environment. However, few studies have reported the adsorption of this emerging contaminant from aqueous matrices. Furthermore, existing research explored only conventional modeling to describe the adsorption phenomenon without understanding the behavior at the molecular level. Herein, the statistical physical modeling of phenazopyridine adsorption into graphene oxide is reported. Steric, energetic, and thermodynamic interpretations were used to describe the phenomenon that controls drug adsorption. The equilibrium data were fitted by mono, double, and multi-layer models, considering factors such as the numbers of phenazopyridine molecules by adsorption sites, density of receptor sites, and half saturation concentration. Furthermore, the statistical physical approach also calculated the thermodynamic parameters (free enthalpy, internal energy, Gibbs free energy, and entropy). The maximum adsorption capacity at the equilibrium was reached at 298 K (510.94 mg g-1). The results showed the physical meaning of adsorption, indicating that the adsorption occurs in multiple layers. The temperature affected the density of receptor sites and half saturation concentration. At the same time, the adsorbed species assumes different positions on the adsorbent surface as a function of the increase in the temperature. Meanwhile, the thermodynamic functions revealed increased entropy with the temperature and the equilibrium concentration.


Assuntos
Nanoestruturas , Termodinâmica , Adsorção , Nanoestruturas/química , Analgésicos/química , Grafite/química , Poluentes Químicos da Água/química , Carbono/química
2.
Int J Biol Macromol ; 275(Pt 1): 133386, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38914407

RESUMO

Biodegradable starch foam trays offer an eco-friendly substitute for petroleum-based single-use packaging, notably polystyrene foams. However, they lack flexibility, tensile strength, and water-sensitivity, addressable through lignocellulosic reinforcement. This study aimed to develop biodegradable starch foam trays filled with different food-chain side streams for sustainable alternative packaging. Corncob, soybean straw, cassava peel, araucaria seed hull, yerba mate stalks and yerba mate leaves petiole were collected, dried and ground to <250 µm. The trays were filled with 13 % (w/w) of each food-chain side streams and produced by hot molding. The trays morphology, moisture, water activity (aw), thickness, bulk density, tensile strength, elongation at break, Young's modulus, bending strength, maximum deflection, and sorption isotherms were investigated. Reinforcements slightly increased the foams bulk density, reduced the tensile strength and maximum deflection and while bending strength increased from 0.20 MPa to 1.17-1.80 MPa. The elasticity modulus decreased by adding any filling, that resulted in ductility improvement; however, these packaging have moisture-sensitive material especially for aw higher than 0.52, which drives the use recommendation for dry products storage or shipping/transport. The biodegradable starch foam trays filled with side streams were successfully produced and offer excellent alternative to petroleum-based packaging low-density material with bending strength improved.


Assuntos
Amido , Resistência à Tração , Amido/química , Água/química , Embalagem de Alimentos/métodos , Manihot/química
3.
Int J Mol Sci ; 25(9)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38731990

RESUMO

This work aimed to describe the adsorption behavior of Congo red (CR) onto activated biochar material prepared from Haematoxylum campechianum waste (ABHC). The carbon precursor was soaked with phosphoric acid, followed by pyrolysis to convert the precursor into activated biochar. The surface morphology of the adsorbent (before and after dye adsorption) was characterized by scanning electron microscopy (SEM/EDS), BET method, X-ray powder diffraction (XRD), and Fourier-transform infrared spectroscopy (FTIR) and, lastly, pHpzc was also determined. Batch studies were carried out in the following intervals of pH = 4-10, temperature = 300.15-330.15 K, the dose of adsorbent = 1-10 g/L, and isotherms evaluated the adsorption process to determine the maximum adsorption capacity (Qmax, mg/g). Kinetic studies were performed starting from two different initial concentrations (25 and 50 mg/L) and at a maximum contact time of 48 h. The reusability potential of activated biochar was evaluated by adsorption-desorption cycles. The maximum adsorption capacity obtained with the Langmuir adsorption isotherm model was 114.8 mg/g at 300.15 K, pH = 5.4, and a dose of activated biochar of 1.0 g/L. This study also highlights the application of advanced machine learning techniques to optimize a chemical removal process. Leveraging a comprehensive dataset, a Gradient Boosting regression model was developed and fine-tuned using Bayesian optimization within a Python programming environment. The optimization algorithm efficiently navigated the input space to maximize the removal percentage, resulting in a predicted efficiency of approximately 90.47% under optimal conditions. These findings offer promising insights for enhancing efficiency in similar removal processes, showcasing the potential of machine learning in process optimization and environmental remediation.


Assuntos
Teorema de Bayes , Carvão Vegetal , Vermelho Congo , Aprendizado de Máquina , Carvão Vegetal/química , Adsorção , Vermelho Congo/química , Cinética , Poluentes Químicos da Água/química , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Environ Sci Pollut Res Int ; 31(23): 34097-34111, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38693458

RESUMO

Dye effluents cause diverse environmental problems. Methylene blue (MB) dye stands out since it is widely used in the textile industry. To reduce the pollution caused by the MB, we developed biosorbents from tucumã seeds, where the in natura seeds were treated with NaOH (BT) and H3PO4 (AT) solutions and characterized by Boehm titration, point of zero charges, FTIR, TGA, BET, and SEM. It was observed that the acid groups predominate on the surface of the three biosorbents. The process was optimized for all biosorbents at pH = 8, 7.5 g/L, 240 min, C0 = 250 mg/L, and 45 ℃. BT was more efficient in removing MB (96.20%; QMax = 35.71 mg/g), while IT and AT removed around 60% in similar conditions. The adsorption process best fits Langmuir and Redlich-Peterson isotherms, indicating a hybrid adsorption process (monolayer and multilayer) and pseudo-second-order kinetics. Thermodynamic data confirmed an endothermic and spontaneous adsorption process, mainly for BT. MB was also recovered through a desorption process with ethanol, allowing the BT recycling and reapplication of the dye. Thus, an efficient and sustainable biosorbent was developed, contributing to reducing environmental impacts.


Assuntos
Azul de Metileno , Sementes , Termodinâmica , Poluentes Químicos da Água , Azul de Metileno/química , Cinética , Adsorção , Sementes/química , Poluentes Químicos da Água/química
5.
Foods ; 13(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38672851

RESUMO

Sustainable methods such as convective drying have regained interest in reducing the loss and waste of food produce. Combined with techniques like blanching and edible coatings, they could serve as useful tools in food processing development. Composite coatings comprising pectin, soy protein isolate, and xanthan gum were optimized using response surface methodology with the Box-Behnken design. This optimization aimed to investigate their effects on the moisture content, water activity, total color, and rehydration ratio of fresh and blanched chayote slices. Additionally, the study explored the modeling of the drying kinetics and sorption isotherms of chayote (Sechium edule) slices. Soy protein and xanthan gum were found to primarily influence the moisture content (ranging from 5.44% to 9.93%), and pectin influenced water activity (033 to 0.53) of the fresh-coated chayote, while pectin affected the aw (2.13-8.28) and rehydration of the blanch-coated chayote. The optimized formulations for both fresh and blanched chayote were utilized to assess the drying kinetics behavior and sorption isotherms. The best fit (R2: 0.996 to 0.999) was achieved with the parabolic model for thin-layer materials. Furthermore, the sorption isotherms of chayote displayed a Type IV behavior, with the BET model being the most suitable for describing the sorption behavior of materials with low water activity. The predicted values offer valuable data for optimizing processing conditions to enhance the quality and stability of dried chayote.

6.
Molecules ; 29(8)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675580

RESUMO

The presence of antibiotics in soils is increasing drastically in last decades due to the intensive farming industry and excessive human consumption. Clay minerals are one of the soil components with great adsorption capacity for organic pollutants. The study of interactions between antibiotics and mineral surfaces will give us scientific knowledge of these pollutants through soils. In this work, we study the adsorption of the antibiotic ciprofloxacin in the clay mineral fraction of soils from the Argentinian zone of Santa Rosa (Corrientes), in a collaborative research of experiments and atomistic modelling calculations of the intercalation of ciprofloxacin in the interlayer space of montmorillonite. Adsorption and desorption isotherms were performed and compared with different isotherm models. Additionally, enthalpy, entropy, and free energy were determined from equilibrium constants at a function of temperature. All these experiments and calculations lead to the conclusions that two adsorption types of ciprofloxacin are found on clay minerals: one weakly sorbed that is released during the desorption experiments, and other one strongly joined that remains in the soil.

7.
Environ Sci Pollut Res Int ; 31(41): 53691-53705, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38206467

RESUMO

In this study, sugarcane bagasse ash (SCBA), obtained as residue from the sugar mill, was used as an adsorbent for Acid Red 27 (AR27) removal from aqueous solutions. The ash characterization data showed 23.63% of organic compounds and silica (α-SiO2) as the most expressive inorganic compound (confirmed by X-ray diffractogram), the BET surface area had a value of 62.79 m2.g-1 and the pHpzc was 8.45. Regarding the adsorptive tests, the optimal initial pH to the dye removal was 2.0. The adsorption equilibrium reached in about 4 h contact time and optimum SCBA dosage was found to be 4 g.L-1. The pseudo-second order model best represented the adsorption kinetics. The Freundlich equation presented the best fit to the equilibrium data for the removal of AR27 by ash, with maximum adsorption capacity of 15 mg.g-1 at pH 2.0. Thermodynamic study indicate that AR27 adsorption on SCBA occurs through a physisorption mechanism, with ΔHºads < 15 kJ.mol-1. The ΔHºads evaluated by Vant' Hoff equation was explained as a combination of water desorption enthalpy, ΔHºW and isosteric like enthalpy, ΔHºD for the dye adsorption in liquid environment. The ΔHºD = 9.2 kJ.mol-1 was calculated from Clausius-Clapeyron approach. The effects of coexisting anions on the adsorption and regeneration and reuse of the adsorbent were also investigated. This study suggests that SCBA, which was used without any pretreatment, has the potential to be applied as a low-cost adsorbent to mitigate effluents contamination with AR27 dye at low concentrations.


Assuntos
Celulose , Saccharum , Termodinâmica , Saccharum/química , Adsorção , Cinética , Celulose/química , Poluentes Químicos da Água/química , Corantes/química , Concentração de Íons de Hidrogênio
8.
Chem Phys Lipids ; 258: 105363, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042456

RESUMO

Cytosporone-B was isolated from fungi and incorporated in models of tumorigenic cell membranes using palmitoyloleoylglycerophosphoserine (POPS) and dipalmitoyl glycerophosphoserine (DPPS) lipids. While for DPPS, the compound condensed the monolayer and decreased the surface compressional modulus, it expanded and kept the compressional modulus for POPS. Hysteresis for compression-expansion cycles was more sensitive for POPS than for DPPS, while a high degree of destabilization was observed for POPS. As observed with infrared spectroscopy and Brewster angle microscopy, specific changes were selective regarding molecular organization and morphology. Atomic force microscopy for transferred monolayers as Langmuir-Blodgett films also confirmed such specificities. We believe these data can help understand the mechanism of action of bioactive drugs in lipid interfaces at the molecular level.


Assuntos
Lipídeos , Serina , Serina/análise , Propriedades de Superfície , Membrana Celular/química , Lipídeos/análise
9.
Chemosphere ; 349: 140937, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38101483

RESUMO

Phosphorus (P) is naturally present in soils. However, urbanization can promote additional inputs of P into the soil that lead to saturation of the binding sites exceeding the maximum sorption capacity. Soils saturated with P act as important diffuse sources of pollution of water resources. The flow of P from the soil to aquatic ecosystems is an aggravating factor for water scarcity, especially in the semiarid region. Knowing phosphorus dynamics in the soil is essential to protect water quality and ensure its multiple uses. In this paper, a total of fifty soil samples, twenty-five from natural soils and twenty-five from urban soils, were evaluated for the effect of urbanization on P sorption characteristics and their relationship with the physical and chemical attributes of the soil. The soil samples were characterized physically and chemically, and the P sorption characteristics were obtained from the adjustment of Langmuir and Freundlich equations by nonlinear regression. Urbanization results in increased soil P saturation and reduced P sorption capacity. Our results show that the sandy texture of the soils studied had a standardizing effect on the soil's physical properties, maintaining, even after urbanization, the physical quality similar to natural soil. In contrast, pH (in water and KCl), base saturation, sodium saturation, potential acidity, exchangeable Al3+, exchangeable Mg2+, available P, and P-rem are valuable indicators in the segregation between natural and urban soils. The reduction of P sorption capacity in urban soils increases the risks related to P loads in aquatic ecosystems that experience urban expansion worldwide. These data serve as a basis for decision-making regarding the appropriate soil monitoring and management of urban expansion areas in watersheds to control P flow to aquatic systems.


Assuntos
Poluentes do Solo , Solo , Solo/química , Areia , Ecossistema , Fósforo/química , Urbanização , Qualidade da Água , Poluentes do Solo/análise
10.
Artigo em Inglês | MEDLINE | ID: mdl-37402045

RESUMO

High phosphate concentrations in natural waters are associated with eutrophication problems that negatively affect the fauna and flora of ecosystems. As an alternative solution to this problem, we evaluated the adsorptive capacity of the fruit peel ash (PPA) of Caryocar coriaceum Wittm and its efficiency in removing phosphate (PO43-) from aqueous solutions. PPA was produced under an oxidative atmosphere and calcinated at 500 °C. The XRF and EDS analyses of PPA after contact with an aqueous PO43- solution showed an increase in its PO43- content, thus confirming the adsorption of PO43-. The Elovich and Langmuir models are the ones fitting the kinetics and the equilibrium state of the process, respectively. The highest PO43- adsorption capacity was approximately 79.50 mg g-1 at 10 °C. PO43- adsorption by PPA is a spontaneous, favorable, and endothermic process involving structural changes. The highest removal efficiency was 97.08% using a 100 mg.L-1 PO43- solution. In sight of this, PPA has shown potential as an excellent natural bioadsorbent.

11.
Molecules ; 28(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37446931

RESUMO

Nanoporous carbons were prepared via chemical and physical activation from mangosteen-peel-derived chars. The removal of atrazine was studied due to the bifunctionality of the N groups. Pseudo-first-order, pseudo-second-order, and intraparticle pore diffusion kinetic models were analyzed. Adsorption isotherms were also analyzed according to the Langmuir and Freundlich models. The obtained results were compared against two commercially activated carbons with comparable surface chemistry and porosimetry. The highest uptake was found for carbons with higher content of basic surface groups. The role of the oxygen-containing groups in the removal of atrazine was estimated experimentally using the surface density. The results were compared with the adsorption energy of atrazine theoretically estimated on pristine and functionalized graphene with different oxygen groups using periodic DFT methods. The energy of adsorption followed the same trend observed experimentally, namely the more basic the pH, the more favored the adsorption of atrazine. Micropores played an important role in the uptake of atrazine at low concentrations, but the presence of mesoporous was also required to inhibit the pore mass diffusion limitations. The present work contributes to the understanding of the interactions between triazine-based pollutants and the surface functional groups on nanoporous carbons in the liquid-solid interface.


Assuntos
Atrazina , Garcinia mangostana , Nanoporos , Atrazina/química , Adsorção , Carvão Vegetal/química , Cinética , Concentração de Íons de Hidrogênio
12.
Materials (Basel) ; 16(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37445198

RESUMO

In this study, inert dry bioadsorbents prepared from corn cob residues (CCR), cocoa husk (CH), plantain peels (PP), and cassava peels (CP) were used as adsorbents of heavy metal ions (Pb2+ and Ni2+) in single-batch adsorption experiments from synthetic aqueous solutions. The physicochemical properties of the bioadsorbents and the adsorption mechanisms were evaluated using different experimental techniques. The results showed that electrostatic attraction, cation exchange, and surface complexation were the main mechanisms involved in the adsorption of metals onto the evaluated bioadsorbents. The percentage removal of Pb2+ and Ni2+ increased with higher adsorbent dosage, with Pb2+ exhibiting greater biosorption capacity than Ni2+. The bioadsorbents showed promising potential for adsorbing Pb2+ with monolayer adsorption capacities of 699.267, 568.794, 101.535, and 116.820 mg/g when using PP, CCR, CH, and CP, respectively. For Ni2+, Langmuir's parameter had values of 10.402, 26.984, 18.883, and 21.615, respectively, for PP, CCR, CH, and CP. Kinetics data fitted by the pseudo-second-order model revealed that the adsorption rate follows this order: CH > CP > CCR > PP for Pb2+, and CH > CCR > PP > CP for Ni2+. The adsorption mechanism was found to be controlled by ion exchange and precipitation. These findings suggest that the dry raw biomasses of corn cob residues, cocoa husk, cassava, and plantain peels can effectively remove lead and nickel, but further research is needed to explore their application in industrial-scale and continuous systems.

13.
Int J Mol Sci ; 24(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37445919

RESUMO

This research presents the results of the immobilization of Candida Antarctica Lipase B (CALB) on MOF-199 and ZIF-8 and its use in the production of biodiesel through the transesterification reaction using African Palm Oil (APO). The results show that the highest adsorption capacity, the 26.9 mg·g-1 Lipase, was achieved using ZIF-8 at 45 °C and an initial protein concentration of 1.20 mg·mL-1. The results obtained for the adsorption equilibrium studies allow us to infer that CALB was physically adsorbed on ZIF-8 while chemically adsorbed with MOF-199. It was determined that the adsorption between Lipase and the MOFs under study better fit the Sips isotherm model. The results of the kinetic studies show that adsorption kinetics follow the Elovich model for the two synthesized biocatalysts. This research shows that under the experimental conditions in which the studies were carried out, the adsorption processes are a function of the intraparticle and film diffusion models. According to the results, the prepared biocatalysts showed a high efficiency in the transesterification reaction to produce biodiesel, with methanol as a co-solvent medium. In this work, the catalytic studies for the imidazolate, ZIF-8, presented more catalytic activity when used with CALB. This system presented 95% biodiesel conversion, while the biocatalyst formed by MOF-199 and CALB generated a catalytic conversion percentage of 90%. Although both percentages are high, it should be noted that CALB-MOF-199 presented better reusability, which is due to chemical interactions.


Assuntos
Biocombustíveis , Enzimas Imobilizadas , Óleo de Palmeira , Cinética , Enzimas Imobilizadas/metabolismo , Lipase/metabolismo , Proteínas Fúngicas/metabolismo , Termodinâmica
14.
Chemosphere ; 312(Pt 1): 137143, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36368529

RESUMO

There is a growing concern about glyphosate's behavior in the environment. Herbicide behavior in soils greatly depends on adsorption-desorption phenomena, which have shown great variability in soils, although the reversibility of this process has been less examined. The adsorption-desorption behavior of glyphosate was measured on representative soil profiles of the northeast region of Argentinean Pampas, a semi-arid crop cultivating region. Two soil profiles samples (P1 and P2, both Entic Haplustoll) were collected and segmented into depth increments of 0-10, 10-20, 20-40, 40-60, 60-80, and 80-100 cm. Batch adsorption/48 h-desorption isotherms were performed in a controlled setup. Soil samples had a high sand content (77-92%), and a low content of clay (<3%), but markedly differing in the available P content, especially in the upper layers of soil profiles (0-40 cm, P1 range 133-170 ppm; P2 range 7-43 ppm). Adsorption-desorption isotherms showed a similar range of variation, between 150 and 1400 L kg -1for KFads and 450-1400 L kg -1for KFdes, without appreciable evidence of hysteresis (0.95 ± 0.05). Sorption capacity parameters showed a distinct behavior with depth, P1 exhibiting a U-shape with minimum values at intermediate depths (20-60 cm), while P2 decreases sharply between 0 and 40 cm. General linear models considering the specific surface area (SSA) of each sample and the spatial correlation structure for soil profiles showed a main positive association of KFads and KFdes with the soil organic matter, together with a positive association with iron content (KFads), and a negative association of KFdes with available P content. These results indicate high adsorption extents and sorption reversibility of glyphosate to sandy loam soils of the region, which implies the potential for the herbicide to be available for leaching or degradation under a scenario of intensive use.


Assuntos
Herbicidas , Poluentes do Solo , Solo/química , Poluentes do Solo/análise , Argentina , Herbicidas/química , Adsorção , Glifosato
15.
Environ Technol ; 44(16): 2441-2450, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35044281

RESUMO

The increasing interest of all stakeholders to achieve environmental protection with socioeconomic development puts pressure on industrial processes for less negative impact on the environment. The use of biomass for wastewater treatment has increased due to its low costs and technical feasibility. The present study aimed the use of biomass from a waste of known polluted area for the adsorption of Zn and Cu in a fixed-bed reactor. Samples were collected in Cubatão (Brazil) and cultivated in LB medium. Resulting cultivable bacterial communities were identified as Enterococcus faecalis and Pseudomonas aeruginosa. Adsorption experiments were performed varying the metallic ion concentration and the amount of biomass. Adsorption experiments showed efficiency rates up to 90%. As the concentration of metallic ions increased, the adsorption efficiency decreased, indicating that the active sites were saturated. Activated charcoal demonstrated lower adsorption rates than biomass. Elution process showed that HNO3 had better efficiency than HCl. Zn adsorption fitted better for Lineweaver-Burk model (Qmax = 200 mg/g of biomass), while Cu adsorption fitted better for Langmuir model (Qmax = 164 mg/g of biomass). Results here demonstrated that the adsorption of Zn and Cu simulating an industrial wastewater by the biomass from a contaminated area is technically feasible.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Cobre/química , Zinco/química , Águas Residuárias , Adsorção , Biomassa , Concentração de Íons de Hidrogênio , Compostos Orgânicos , Purificação da Água/métodos , Cinética , Poluentes Químicos da Água/química
16.
F1000Res ; 12: 747, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38571570

RESUMO

Background: The paper describes lead ion adsorption on variable charge oxidic calcined substrates with chemically modified surfaces. Amphoteric oxides of iron, aluminum, titanium, and manganese, change their surface electric charge after acid or alkaline treatment, letting cationic or anionic adsorption reactions from aqueous solutions. This property allows using them as adsorbing substrate for heavy metals retention in water treatment systems. Methods: Substrate was prepared by extruding cylindrical strips from a saturate paste of the oxidic lithological material-OLM; dries it up and thermally treated by calcination. The study was performed by triplicated trial, on batch mode, using 2 grams samples of treated with NaOH 0.1N and non-treated substrate. Lead analysis was performed by AAS-GF. Freundlich and Langmuir models were used to fit results. Comparing differential behavior between treated and non-treated substrates showed the variable charge nature of the OLM. Results: Results show L-type isotherms for the adsorption of Pb(II) ions on the activated substrate, suggesting good affinity between Pb(II) ions and OLM's surface. Average value of adsorption capacity ( K) for activated substrate (1791.73±13.06), is around four times greater than the non-activated substrate (491.54±31.97), during the adsorption reaction, 0.35 and 0.26 mmolH + of proton are produced on the activated and non-activated substrate respectively using a 1 mM Pb(II) solution and 72.2 and 15.6 mmolH + using a 10 mM Pb(II) solution. This acidification agrees with the theoretic model of transitional metals chemisorption on amphoteric oxides, present in lithological material used for the preparation of adsorbent substrates, confirming the information given by the L-type isotherms. Conclusions: Results suggest that these variable charge oxidic adsorbent substrate show great potential as an alternative technique for water treatment at small and medium scale using granular filtration system. The easiness and low price make them suitable to apply in rural media where no treating water systems is available.


Assuntos
Chumbo , Óxidos , Adsorção , Concentração de Íons de Hidrogênio , Óxidos/química , Íons
17.
Polymers (Basel) ; 14(21)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36365577

RESUMO

Rare earth elements such as neodymium (Nd) are important elements used mainly in developing new technologies. Although they are found in low concentrations in nature, they can be obtained by extracting solid samples such as phosphogypsum. Among the techniques, adsorption has been used successfully with several adsorbent materials. In this work, two strains of Spirulina platensis (LEB-18 and LEB-52) were employed as biosorbents for efficiently removing the Nd element from the aqueous media. Biosorption tests were carried out in a batch system, and the results of the biosorption kinetics showed that for both materials, the biosorption of Nd was better described by the Avrami model. Moreover, it could be considered that 80 min would be necessary to attain the equilibrium of Nd(III) using both biosorbents. The result of the biosorption isotherms showed that for both strains, the best-fitted model was the Liu model, having a maximum biosorption capacity of 72.5 mg g−1 for LEB-18 and 48.2 mg g−1 for LEB-52 at a temperature of 298 K. Thermodynamics of adsorption showed that for both LEB-18 and LEB-52 the process was favorable (∆G° < 0) and exothermic (∆H° −23.2 for LEB-18 and ∆H° −19.9 for LEB-52). Finally, both strains were suitable to uptake Nd, and the better result of LEB-18 could be attributed to the high amount of P and S groups in this biomass. Based on the results, a mechanism of electrostatic attraction of Nd3+ and phosphate and sulfate groups of both strains of Spirulina platensis was proposed.

18.
Heliyon ; 8(8): e10275, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36051267

RESUMO

A variety of organic wastes can be used in innovative methods to treat water pollution through the adsorption process. In this work, we evaluated the effect of particle size (500-2000, 250-500, and less than 250 µm) and bio-adsorbent (orange, potato, and passion fruit peels) on the removal of lead and chromium from solution. The size and type of peels affected the capacity to adsorb metal ions (p < 0.05). Passion fruit peel had the highest metal adsorption, followed by orange and potato, since the cation exchange capacity (217.70 ± 39.57 cmol (+) kg-1) and the specific surface area (141.10-1095.29 cm2 g-1) were higher in the passion fruit rind. The size of the adsorbent did not affect the organic matter, ash, exchange capacity, surface chemistry, or pH of the peels. However, these properties differed among the bio-adsorbents (p < 0.05). The Freundlich equation explained the adsorption of the metallic ions on the orange rind and of lead on the passion fruit. The linear model was the best fit for the adsorption isotherms of the metals on potato peel. The adsorption of chromium on the passion fruit had a maximum adsorption capacity of 3.3 mg g-1. These results indicate that plant waste materials, especially passion fruit peel, have the potential as feasible and low-cost adsorbents in pilot studies for the treatment of polluted water.

19.
Bioprocess Biosyst Eng ; 45(7): 1189-1200, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35713785

RESUMO

This work investigates the possibility of using scales of sea bass Dicentrarchus labrax as a low-cost material for the adsorptive removal of methylene blue (MB) cationic dye in aqueous solutions. The physical-chemical characterizations of fish scales in natura (FS-in natura) revealed through thermogravimetry that they are composed of inorganic (hydroxyapatite) and organic (collagen) phases in relatively similar amounts. Spectroscopy analyses show that the interactions of MB with FS-in natura occur mainly in the organic phase layer of the adsorbent. The effects of initial MB concentration (5.0 × 10-4 and 5.0 × 10-3 mol L-1) and temperature (25-55 °C) on the adsorption efficiency of FS-in natura were evaluated. FS-in natura at MB concentration (5.0 × 10-3 and 5.0 × 10-4 mol L-1) exhibited the maximum adsorption capacities of 2.2 × 10-3 mol g-1 at 25 °C and 2.8 × 10-5 mol g-1 at 55 °C, respectively. The pseudo-second-order model represented the adsorption kinetics well, and the equilibrium isotherm data were better correlated using the Langmuir equation. The newly developed neural model demonstrated a high predictive capacity with an R-value greater than 0.99 and reduced values for mean squared error, root mean squared error, and mean absolute error equal to 0.003, 0.055, and 0.0348, respectively. The genetic algorithm was used to optimize the experimental conditions of the process. In conclusion, the sea bass scales have promising prospects as a low-cost alternative material for removing cationic dyes from aqueous solutions.


Assuntos
Bass , Poluentes Químicos da Água , Adsorção , Animais , Biodegradação Ambiental , Corantes/química , Concentração de Íons de Hidrogênio , Cinética , Azul de Metileno/química , Termodinâmica , Água , Poluentes Químicos da Água/química
20.
R Soc Open Sci ; 9(3): 211644, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35291324

RESUMO

Copper has been proven to have hazardous effects on human beings depending on its concentration levels. Recently, there has been a growing interest in developing geopolymers using local industrial minerals and by-products. However, research on the adsorption of heavy metals by geopolymer based on mordenite-rich tuffs is still limited. The geopolymer adsorbents have been synthesized using natural Ecuadorian zeolite-rich tuffs containing quartz, mordenite calcite and amorphous content with 20.8%, 28.5%, 4.2% and 46.4%, respectively. The geopolymers showed a maximum compressive strength of 26.86 MPa for 28 d of curing time. In the present study, an Ecuadorian zeolite-based geopolymer's removal capacity on copper ions in aqueous solutions, varying concentration and contact time were tested. Kinetic models were developed using pseudo first-order, pseudo second-order and the Elovich model. The adsorption data, using Cu2+ concentrations from 20 to 160 ppm, at 25°C were described by the Langmuir and Freundlich isotherms. Linear coefficient of determination (R 2) results show that the Langmuir model fits the best. The attained adsorption capacity of 52.63 mg g-1 demonstrates the low-cost geopolymer's effectiveness for this study and its competitiveness compared with other studies. Adsorption kinetics follows the pseudo second-order kinetics model at the lower initial concentration of Cu2+.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA