Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Macromol Rapid Commun ; 45(2): e2300470, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37716013

RESUMO

Herein, an evaluation of the initial step of benzoxazine polymerization is presented by mass spectrometry, with a focus on differentiating the phenoxy and phenolic products formed by distinct pathways of the cationic ring opening polymerization (ROP) mechanism of polybenzoxazine formation. The use of infrared multiple photon dissociation (IRMPD) and ion mobility spectrometry (IMS) techniques allows for differentiation of the two pathways and provides valuable insights into the ROP mechanism. The results suggest that type I pathway is favored in the initial stages of the reaction yielding the phenoxy product, while type II product should be observed at later stages when the phenoxy product would interconvert to the most stable type II phenolic product. Overall, the findings presented here provide important information on the initial step of the benzoxazine polymerization, allowing the development of optimal polymerization conditions and represents a way to evaluate other multifunctional polymerization processes.


Assuntos
Benzoxazinas , Fenóis , Polimerização , Benzoxazinas/química , Fenóis/química , Cátions
2.
Biophys Chem ; 298: 107027, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37172417

RESUMO

The crystallographic B-factor, also called temperature factor or Debye-Waller factor, has long been used as a surrogate for local protein flexibility. However, the use of the absolute B-factor as a probe for protein motion requires reproducible validation against conformational changes against chemical and physical variables. Here we report the investigation of the thermal dependence of the crystallographic B-factor and its correlation with conformational changes of the protein. We obtained the crystal protein structure coordinates and B-factors at high resolution (1.5 Å) over a broad temperature range (100 K to 325 K). The exponential thermal dependence of B-factor as a function of temperature was equal for both the diffraction intensity data (Wilson B-factor) and for all modeled atoms of the system (protein and non-protein atoms), with a thermal diffusion constant of about 0.0045 K-1, similar for all atoms. The extrapolated B-factor at zero Kelvin (or zero-point fluctuation) varies among the atoms, although with no apparent correlation with temperature-dependent protein conformational changes. These data suggest that the thermal vibration of the atom does not necessarily correlate with the conformational dynamics of the protein.


Assuntos
Proteínas , Temperatura , Conformação Proteica , Cristalografia
3.
Clin Mass Spectrom ; 18: 27-37, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34820523

RESUMO

The development of non-invasive screening techniques for early cancer detection is one of the greatest scientific challenges of the 21st century. One promising emerging method is the analysis of volatile organic compounds (VOCs). VOCs are low molecular weight substances generated as final products of cellular metabolism and emitted through a variety of biological matrices, such as breath, blood, saliva and urine. Urine stands out for its non-invasive nature, availability in large volumes, and the high concentration of VOCs in the kidneys. This review provides an overview of the available data on urinary VOCs that have been investigated in cancer-focused clinical studies using mass spectrometric (MS) techniques. A literature search was conducted in ScienceDirect, Pubmed and Web of Science, using the keywords "Urinary VOCs", "VOCs biomarkers" and "Volatile cancer biomarkers" in combination with the term "Mass spectrometry". Only studies in English published between January 2011 and May 2020 were selected. The three most evaluated types of cancers in the reviewed studies were lung, breast and prostate, and the most frequently identified urinary VOC biomarkers were hexanal, dimethyl disulfide and phenol; with the latter seeming to be closely related to breast cancer. Additionally, the challenges of analyzing urinary VOCs using MS-based techniques and translation to clinical utility are discussed. The outcome of this review may provide valuable information to future studies regarding cancer urinary VOCs.

4.
J Sep Sci ; 42(1): 243-257, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30156751

RESUMO

In a previous review (Sánchez-Camargo et al., J. Sep. Sci. 40 (2017) 213-227), we discussed the application of on-line supercritical fluid extraction coupled to chromatographic techniques. This review includes an update of the most recent publications (from January 2016 till June 2018) on this topic, which employs advanced analytical techniques for extracting and identifying valuable analytes. Supercritical fluid extraction has been widely recognized as a green sample preparation technique, because it is efficient, environmentally friendly, powerful, and faster, offering the possibility of direct coupling to analytical instrumental techniques. Among those techniques, supercritical fluid chromatography has experienced an innovative progression in the last 10 years, and the most recent applications of supercritical fluid extraction are coupled to this advanced analytical tool. The general principles, both methodological and instrumental of on-line supercritical fluid extraction coupled to supercritical fluid chromatography are described here. Besides, applications of the mentioned coupling for analysing biological fluids, food, soil, and botanical samples are also presented and discussed. Finally, a brief description about the very recent on-line coupling of supercritical fluid extraction to ion mobility spectrometry is presented, as well as concluding remarks about the importance of using these coupled techniques in the near future.


Assuntos
Líquidos Corporais/química , Cromatografia com Fluido Supercrítico , Poluentes Ambientais/análise , Contaminação de Alimentos/análise , Solo/química , Humanos
5.
Rev. Assoc. Med. Bras. (1992, Impr.) ; Rev. Assoc. Med. Bras. (1992, Impr.);64(9): 861-868, Sept. 2018. graf
Artigo em Inglês | LILACS | ID: biblio-976854

RESUMO

SUMMARY Ion mobility spectrometry (IMS) is a fast, low cost, portable, and sensitive technique that separates ions in a drift tube under the influence of an electric field according to their size and shape. IMS represents a non-invasive and reliable instrumental alternative for the diagnosis of different diseases through the analysis of volatile metabolites in biological samples. IMS has applications in medicine in the study of volatile compounds for the non-invasive diagnose of bronchial carcinoma, chronic obstructive pulmonary disease, and other diseases analysing breath, urine, blood, faeces, and other biological samples. This technique has been used to study complex mixtures such as proteomes, metabolomes, complete organisms like bacteria and viruses, monitor anaesthetic agents, determine drugs, pharmaceuticals, and volatile compounds in human body fluids, and others. Pharmaceutical applications include analysis of over-the-counter-drugs, quality assessment, and cleaning verification. Medical practice needs non-invasive, robust, secure, fast, real-time, and low-cost methods with high sensitivity and compact size instruments to diagnose different diseases and IMS is the diagnostic tool that meets all these requirements of the Medicine of the future.


RESUMO A espectrometria de mobilidade iônica (IMS) é uma técnica rápida, de baixo custo, portátil e sensível que separa íons em um tubo de deriva sob a influência de um campo elétrico de acordo com seu tamanho e forma. A IMS representa uma alternativa instrumental não invasiva e confiável para o diagnóstico de diferentes doenças por meio da análise de metabólitos voláteis em amostras biológicas. A IMS possui aplicações em medicina no estudo de compostos voláteis para o diagnóstico não invasivo de carcinoma brônquico, doença pulmonar obstrutiva crônica e outras doenças que analisam respiração, urina, sangue, fezes e outras amostras biológicas. A IMS tem sido usada para estudar misturas complexas, como proteomas, metabólitos, organismos completos como bactérias e vírus, monitorar agentes anestésicos, determinar drogas, produtos farmacêuticos e compostos voláteis em fluidos corporais e outros fluidos. As aplicações farmacêuticas incluem análises de medicamentos sem receita, avaliação de qualidade e verificação de limpeza. A prática médica precisa de métodos não invasivos, robustos, seguros, rápidos, em tempo real e de baixo custo com instrumentos de alta sensibilidade e tamanho compacto para diagnosticar diferentes doenças e a IMS é a ferramenta de diagnóstico que atende a todos esses requisitos da medicina do futuro.


Assuntos
Humanos , Espectrometria de Mobilidade Iônica/métodos , Testes Respiratórios/métodos , Reprodutibilidade dos Testes , Técnicas de Diagnóstico do Sistema Respiratório , Compostos Orgânicos Voláteis/análise , Espectrometria de Mobilidade Iônica/tendências , Pneumopatias/diagnóstico , Ilustração Médica
6.
J Mass Spectrom ; 53(7): 598-613, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29689602

RESUMO

Ion mobility spectrometry (IMS) is an analytical technique used for fast and sensitive detection of illegal substances in customs and airports, diagnosis of diseases through detection of metabolites in breath, fundamental studies in physics and chemistry, space exploration, and many more applications. Ion mobility spectrometry separates ions in the gas-phase drifting under an electric field according to their size to charge ratio. Ion mobility spectrometry disadvantages are false positives that delay transportation, compromise patient's health and other negative issues when IMS is used for detection. To prevent false positives, IMS measures the ion mobilities in 2 different conditions, in pure buffer gas or when shift reagents (SRs) are introduced in this gas, providing 2 different characteristic properties of the ion and increasing the chances of right identification. Mobility shifts with the introduction of SRs in the buffer gas are due to clustering of analyte ions with SRs. Effective SRs are polar volatile compounds with free electron pairs with a tendency to form clusters with the analyte ion. Formation of clusters is favored by formation of stable analyte ion-SR hydrogen bonds, high analytes' proton affinity, and low steric hindrance in the ion charge while stabilization of ion charge by resonance may disfavor it. Inductive effects and the number of adduction sites also affect cluster formation. The prediction of IMS separations of overlapping peaks is important because it simplifies a trial and error procedure. Doping experiments to simplify IMS spectra by changing the ion-analyte reactions forming the so-called alternative reactant ions are not considered in this review and techniques other than drift tube IMS are marginally covered.

7.
Anal Bioanal Chem ; 409(28): 6595-6603, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28932891

RESUMO

Static headspace gas chromatography-ion mobility spectrometry (SHS GC-IMS) is a relatively new analytical technique that has considerable potential for analysis of volatile organic compounds (VOCs). In this study, SHS GC-IMS was used for the identification of the major terpene components of various essential oils (EOs). Based on the data obtained from 25 terpene standards and 50 EOs, a database for fingerprint identification of characteristic terpenes and EOs was generated utilizing SHS GC-IMS for authenticity testing of fragrances in foods, cosmetics, and personal care products. This database contains specific normalized IMS drift times and GC retention indices for 50 terpene components of EOs. Initially, the SHS GC-IMS parameters, e.g., drift gas and carrier gas flow rates, drift tube, and column temperatures, were evaluated to determine suitable operating conditions for terpene separation and identification. Gas chromatography-mass spectrometry (GC-MS) was used as a reference method for the identification of terpenes in EOs. The fingerprint pattern based on the normalized IMS drift times and retention indices of 50 terpenes is presented for 50 EOs. The applicability of the method was proven on examples of ten commercially available food, cosmetic, and personal care product samples. The results confirm the suitability of SHS GC-IMS as a powerful analytical technique for direct identification of terpene components in solid and liquid samples without any pretreatment. Graphical abstract Fingerprint pattern identification of terpenes and essential oils using static headspace gas chromatography-ion mobility spectrometry.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Mobilidade Iônica/métodos , Óleos Voláteis/análise , Terpenos/análise , Cosméticos/química , Desenho de Equipamento , Análise de Alimentos/métodos , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Espectrometria de Mobilidade Iônica/instrumentação , Compostos Orgânicos Voláteis/análise
8.
J Mass Spectrom ; 52(12): 823-829, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28877381

RESUMO

Ion mobility spectrometry (IMS) is an analytical technique that separates gas-phase ions drifting under an electric field according to their size to charge ratio. We used electrospray ionization-drift tube IMS coupled to quadrupole mass spectrometry to measure the mobilities of glucosamine (GH+ ) and caffeine (CH+ ) ions in pure nitrogen or when the shift reagent (SR) 2-butanol was introduced in the drift gas at 6.9 mmol m-3 . Binding energies of 2-butanol-ion adducts were calculated using Gaussian 09 at the CAMB3LYP/6-311++G(d,p) level of theory. The mobility shifts with the introduction of 2-butanol in the drift gas were -2.4% (GH+ ) and -1.7% (CH+ ) and were due to clustering of GH+ and CH+ with 2-butanol. The formation of GBH+ was favored over that of CBH+ because GBH+ formed more stable hydrogen bonds (83.3 kJ/mol) than CBH+ (81.7 kJ/mol) for the reason that the positive charge on CH+ is less sterically available than on GH+ and the charge is stabilized by resonance in CH+ . These results are a confirmation of the arguments used to explain the drift behavior of these ions when ethyl lactate SR was used (Bull Kor Chem Soc 2014, 1023-1028). This study is a step forward to predict IMS separations of overlapping peaks in IMS spectra, simplifying a procedure that is trial and error by now.


Assuntos
Butanóis/química , Cafeína/análise , Glucosamina/análise , Espectrometria de Mobilidade Iônica/métodos , Gases/química , Íons/química , Modelos Moleculares , Nitrogênio/química , Termodinâmica
9.
J Chromatogr A ; 1501: 79-88, 2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28438317

RESUMO

This paper utilized L-alanine aminopeptidase activity as a useful approach to distinguish between Gram-negative and Gram-positive bacteria. This was done using two enzyme substrates, specifically 2-amino-N-phenylpropanamide and 2-amino-N-(4-methylphenyl)propanamide which liberated the volatile compounds aniline and p-toluidine, respectively. Two complementary analytical techniques have been used to identify and quantify the VOCs, specifically static headspace multicapillary column gas chromatography ion mobility spectrometry (SHS-MCC-GC-IMS) and headspace solid phase microextraction gas chromatography mass spectrometry (HS-SPME-GC-MS). Superior limits of detection were obtained using HS-SPME-GC-MS, typically by a factor of x6 such that the LOD for aniline was 0.02µg/mL and 0.01µg/mL for p-toluidine. In addition, it was also possible to determine indole interference-free by HS-SPME-GC-MS at an LOD of 0.01µg/mL. The approach was applied to a range of selected bacteria: 15 Gram-negative and 7 Gram-positive bacteria. Use of pattern recognition, in the form of Principal Component Analysis, confirmed that it is possible to differentiate between Gram-positive and Gram-negative bacteria using the enzyme generated VOCs, aniline and p-toluidine. The exception was Stenotrophomonas maltophilia which showed negligible VOC concentrations for both aniline and p-toluidine, irrespective of the analytical techniques used and hence was not characteristic of the other Gram-negative bacteria investigated. The developed methodology has the potential to be applied for clinical and food applications.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Bactérias Gram-Negativas/química , Bactérias Gram-Positivas/química , Microextração em Fase Sólida/métodos , Compostos Orgânicos Voláteis/química , Análise Discriminante , Bactérias Gram-Negativas/metabolismo , Bactérias Gram-Positivas/metabolismo , Compostos Orgânicos Voláteis/isolamento & purificação , Compostos Orgânicos Voláteis/metabolismo
10.
Biologicals ; 45: 69-77, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28341309

RESUMO

The characterization of conformational and oligomeric distribution of proteins is of paramount importance for the understanding of the correlation between structure and function. Among the bioanalytical approaches currently available, the electrospray ionization-mass spectrometry (ESI-MS) coupled to ion mobility spectrometry (IMS) is the best suited for high resolution identification with high sensitivity, allowing the in situ separation of oligomeric and conformational species. We tested the performance of the ESI-MS technique along with the IMS separation approach on a broad variety of insulin and insulin analogues with distinct oligomeric distribution pattern. The measurement of commercial insulin allowed the identification of species ranging from monomers to hexamers and their complexes with zinc ions. Dissimilar distribution profile for regular insulin as a function of formulation component and among the insulin analogues were observed by ESI-IMS-MS but not by ESI-MS along, crystallographic assays or size-exclusion chromatography. These data suggest the additional suitability of ESI-IMS-MS in conformational and oligomeric profiling of biomacromolecules and biopharmaceuticals. The easiness of the technique provides further motivation for its application in the characterization of both raw and formulated protein biopharmaceuticals in routine and comparability exercises.


Assuntos
Insulina/química , Espectrometria de Massas/métodos , Proteínas/química , Espectrometria de Massas por Ionização por Electrospray/métodos , Cromatografia em Gel/métodos , Dicroísmo Circular , Cristalização , Cristalografia por Raios X , Bases de Dados de Proteínas , Humanos , Modelos Moleculares , Conformação Proteica , Multimerização Proteica , Soluções , Zinco/química
11.
Biophys Chem ; 180-181: 135-44, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23974296

RESUMO

Amylin is a pancreatic hormone co-secreted with insulin. Human amylin has been shown to form dimers and exhibit high propensity for amyloid fibril formation. We observed the ability of the water-soluble murine amylin to aggregate in water resulting in an insoluble material with Thioflavin T binding properties. Infrared spectroscopy analysis revealed beta-sheet components in the aggregated murine amylin. Morphological analysis by transmission electron microscopy and atomic force microscopy provided access to the fibril nature of the murine amylin aggregate which is similar to amyloid fibrils from human amylin. X-ray diffraction of the murine amylin fibrils showed peaks at 4.7Å and 10Å, a fingerprint for amyloid fibrils. Electron spray ionization-ion mobility spectroscopy-mass spectrometry (ESI-IMS-MS) analysis and crosslinking assays revealed self-association intermediates of murine amylin into high order oligomeric assemblies. These data demonstrate the stepwise association mechanism of murine amylin into stable oligomers, which ultimately converges to its organization into amyloid fibrils.


Assuntos
Amiloide/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Amiloide/química , Animais , Benzotiazóis , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/química , Camundongos , Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão , Polimerização , Ligação Proteica , Estrutura Secundária de Proteína , Soluções/química , Espectrometria de Massas por Ionização por Electrospray , Espectrofotometria Infravermelho , Tiazóis/química , Tiazóis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA