Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 885: 163687, 2023 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-37137370

RESUMO

Interactive effects of trace metal contamination, ocean warming, and CO2-driven acidification on the structure of a meiofaunal benthic community was assessed. Meiofauna microcosm bioassays were carried out in controlled conditions in a full factorial experimental design which included three fixed factors: metal contamination in the sediment (3 levels of a mixture of Cu, Pb, Zn, and Hg), temperature (26 and 28 °C) and pH (7.6 and 8.1). Metal contamination caused a sharp decrease in the densities of the most abundant meiobenthic groups and interacted with temperature rise, exacerbating deleterious effects for Nematoda and Copepoda, but mitigating effects for Acoelomorpha. CO2-driven acidification resulted in increased acoelomorphs density, but only in sediments with lower levels of metals. Copepod densities, in turn, were lower in the CO2-driven acidification scenario regardless of contamination or temperature. The results obtained in the present study showed that temperature rise and CO2-driven acidification of coastal ocean waters, at environmentally relevant levels, interacts with trace metals in marine sediments, differently affecting the major groups of benthic biota.


Assuntos
Nematoides , Oligoelementos , Animais , Dióxido de Carbono , Concentração de Íons de Hidrogênio , Metais/toxicidade , Oceanos e Mares , Sedimentos Geológicos/química
2.
PeerJ ; 9: e10958, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33717694

RESUMO

In this study, we evaluated the interactive effects of temperature, pH, and nutrients on photosynthetic performance in the calcareous tropical macroalga Halimeda scabra. A significant interaction among these factors on gross photosynthesis (Pgross ) was found. The highest values of Pgross were reached at the highest temperature, pH, and nutrient enrichment tested and similarly in the control treatment (no added nutrients) at 33 °C at the lowest pH. The Q 10 Pgross values confirmed the effect of temperature only under nutrient enrichment scenarios. Besides the above, bicarbonate (HCO3 -) absorption was assessed by the content of carbon stable isotope (δ13C) in algae tissue and by its incorporation into photosynthetic products, as well as by carbonic anhydrase (CA) inhibitors (Acetazolamide, AZ and Ethoxyzolamide, EZ) assays. The labeling of δ13C revealed this species uses both, CO2 and HCO3 - forms of Ci relying on a CO2 Concentration Mechanism (CCM). These results were validated by the EZ-AZ inhibition assays in which photosynthesis inhibition was observed, indicating the action of internal CA, whereas AZ inhibitor did not affect maximum photosynthesis (Pmax ). The incorporation of 13C isotope into aspartate in light and dark treatments also confirmed photosynthetic and non-photosynthetic the HCO3 -uptake.

3.
Sci Total Environ ; 759: 143435, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33239201

RESUMO

Agricultural expansion and intensification has led globally to a rapid landscape structure change and high agrochemical use resulting in habitat loss and degraded environmental quality. Co-occurrence of landscape change and agrochemical contamination threatens biodiversity and might have interactive effects especially for organisms with complex life-cycles such as amphibians. We evaluated effects of landscape structure and agrochemical contamination at different spatial scales on anurans in Entre Rios, Argentina. We selected 35 independent stream headwaters along an agricultural expansion and intensification gradient. We conducted anuran call surveys from spring 2012 to summer 2013 and obtained detection-non detection data to estimate mean richness and focal species occupancy. We quantified forest area and riparian forest width at two spatial scales (sub-basin and local reach scale). We measured nutrients and pesticides in water and sediment. We evaluated anuran response to landscape and contamination variables using GLMs for richness and single season single-species occupancy models for focal species. Anuran diversity increased with forest area and riparian forest width, and decreased at sites with herbicide and nutrient contamination, particularly glyphosate; 2,4-D and nitrates. Also, most focal frog species responded mainly to basin forest and 2,4-D. Negative effects of agrochemical contamination on anuran diversity was mitigated in areas with larger basin forest cover. Agricultural management should ensure the reduction of herbicide and fertilizer use, the sparing of adequate forested habitat within drainage areas, and preservation of riparian forests around anuran breeding habitat to reduce and mitigate the negative effects of agrochemical contamination on anurans diversity in agroecosystems.


Assuntos
Agroquímicos , Florestas , Agroquímicos/toxicidade , Animais , Anuros , Argentina , Biodiversidade , Ecossistema
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA