Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Acta Trop ; 252: 107149, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38360259

RESUMO

The enzyme NADPH-cytochrome P450 reductase (CPR) plays a central role in cytochromes P450 activity. Gene expression analysis of cytochromes P450 and CPR in deltamethrin-resistant and susceptible populations revealed that P450s genes are involved in the development of insecticide resistance in Triatoma infestans. To clarify the role of cytochromes P450 in insecticide resistance, it was proposed to investigate the effect of CPR gene silencing by RNA interference (RNAi) in a pyrethroid resistant population of T. infestans. Silencing of the CPR gene showed a significant increase in susceptibility to deltamethrin in the population analysed. This result support the hypothesis that the metabolic process of detoxification mediated by cytochromes P450 contributes to the decreased deltamethrin susceptibility observed in the resistant strain of T. infestans.


Assuntos
Doença de Chagas , Inseticidas , Piretrinas , Triatoma , Animais , Inseticidas/farmacologia , Interferência de RNA , Piretrinas/farmacologia , Doença de Chagas/genética , Nitrilas/farmacologia , Resistência a Inseticidas/genética , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Sistema Enzimático do Citocromo P-450/farmacologia
2.
Front Microbiol ; 13: 761459, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35979482

RESUMO

Aedes aegypti is a mosquito that transmits viral diseases such as dengue, chikungunya, Zika, and yellow fever. The insect's microbiota is recognized for regulating several biological processes, including digestion, metabolism, egg production, development, and immune response. However, the role of the bacteria involved in insecticide susceptibility has not been established. Therefore, the objective of this study was to characterize the resident microbiota in a field population of A. aegypti to evaluate its role associated with susceptibility to the insecticides permethrin and deltamethrin. Mosquitoes were fed 10% sucrose mixed with antibiotics and then exposed to insecticides using a diagnostic dose. DNA was extracted, and sequencing of bacterial 16S rRNA was carried out on Illumina® MiSeq™. Proteobacteria (92.4%) and Bacteroidetes (7.6%) were the phyla, which are most abundant in mosquitoes fed with sucrose 10%. After exposure to permethrin, the most abundant bacterial species were Pantoea agglomerans (38.4%) and Pseudomonas azotoformans-fluorescens-synxantha (14.2%). Elizabethkingia meningoseptica (38.4%) and Ps. azotoformans-fluorescens-synxantha (26.1%) were the most abundant after exposure to deltamethrin. Our results showed a decrease in mosquitoes' survival when exposed to permethrin, while no difference in survival when exposed to deltamethrin when the microbiota was modified. We found that the change in microbiota modifies the response of mosquitoes to permethrin. These results are essential for a better understanding of mosquito physiology in response to insecticides.

3.
Ecotoxicology ; 31(6): 998-1008, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35779162

RESUMO

Pyriproxyfen is a juvenile hormone analogue that is commonly used to control the immature stages of mosquitoes in both artificial and natural water reservoirs. Recently, concerns have been raised regarding the community effectiveness of pyriproxyfen in preventing vector-transmitted diseases. Such concerns have been based on the unintended effects on non-target organisms and the selection of resistant mosquito populations. This investigation was, therefore, conducted to evaluate the toxicity of pyriproxyfen to Aedes aegypti (Diptera: Culicidae) larvae and the backswimmer Buenoa amnigenus (Hemiptera: Notonectidae), a naturally occurring mosquito larvae predator. We also assessed the abilities of backswimmers exposed to sublethal levels of pyriproxyfen to prey upon mosquito larvae (L2) under three larval densities (3, 6, or 9 larvae/100 mL of water) using artificial containers. Our results revealed that pyriproxyfen killed backswimmers only at concentrations higher than 100 µg active ingredient [a.i.]/L, which is 10 times higher than that recommended for larvicidal field application (i.e, 10 µg a.i./L). The abilities of backswimmers exposed to sublethal levels of pyriproxyfen (100 µg a.i./L) to prey upon mosquito larvae were not affected. Harmful effects on the backswimmer predatory abilities were detected only at concentrations of 150 µg a.i./L and when there was a higher prey availability (i.e., 9 larvae/100 mL of water). Together, our findings indicate that the reduced community effectiveness of this insecticide derives from factors other than its detrimental effects on non-target organisms such as backswimmers.


Assuntos
Aedes , Heterópteros , Inseticidas , Animais , Inseticidas/toxicidade , Larva , Controle de Mosquitos/métodos , Mosquitos Vetores , Piridinas , Água
4.
J Am Mosq Control Assoc ; 38(3): 224-225, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839270

RESUMO

We report results of susceptibility tests for Aedes taeniorhynchus from 2 localities of Yucatan State, Mexico, to different insecticides. The Centers for Disease Control and Prevention bottle bioassays were performed using the active ingredients of 3 pyrethroids, 2 organophosphates, and 1 carbamate: permethrin (15 µg/ml), deltamethrin (10 µg/ml), alpha-cypermethrin (10 µg/ml), malathion (50 µg/ml), chlorpyrifos (85 µg/ml), and bendiocarb (12.5 µg/ml). The mortality recorded at the diagnostic time of exposure (30 min) was 100% with all insecticides evaluated and for both populations. These results suggest complete susceptibility to the 3 chemical groups generally used for urban Ae. aegypti mosquito control.


Assuntos
Aedes , Inseticidas , Ochlerotatus , Piretrinas , Animais , Resistência a Inseticidas , Inseticidas/farmacologia , Malation , México
5.
Neotrop Entomol ; 51(4): 613-627, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35708900

RESUMO

Growers rely on synthetic insecticides to control the boll weevil throughout the reproductive cotton stage. An average of 19.6 insecticide applications (range: 10 to 30) for control of boll weevil were found in a survey with growers in the Brazilian Cerrado, covering an area of 494,100 hectares of cotton. Twenty-one insecticides were applied, with 64.8% of the applications made with malathion, fipronil, carbosulfan, and thiamethoxam + lambda-cyhalothrin. These four insecticides were used by 100, 76, 70, and 62% of the growers, with respectively 7.2, 2.1, 1.8, and 1.6 applications. Growers classified their boll weevil control achieved into four categories (fair, good, very good, or excellent), without correlation between these categories with the number of insecticide applications. Control of cotton regrowth and volunteer cotton plants were the major obstacles for effective boll weevil management, followed by the low efficacy of insecticides. Five registered insecticides to spray cotton against other pests than boll weevil were enlisted by growers with potential for recommendation. A boll weevil standard population for susceptibility was assayed with 27 insecticides and the results presented within a failure risk quotient (FRQ). The FRQ of eight, six, and 13 of the 27 tested insecticides was high, intermediate, and low, respectively. The high FRQ included 7 of 10 pyrethroid formulations, pymetrozine, and methomyl. On the opposite end, fipronil had the lowest FRQ value.


Assuntos
Besouros , Inseticidas , Gorgulhos , Animais , Brasil , Gossypium , Humanos , Malation
6.
Parasit Vectors ; 12(1): 110, 2019 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-30871639

RESUMO

BACKGROUND: In Brazil, members of the sand fly species complex Lutzomyia longipalpis transmit Leishmania infantum, a protist parasite that causes visceral leishmaniasis. Male Lu. longipalpis produce a sex pheromone that is attractive to both females and males. During a cluster randomised trial, to determine the combined effect of synthetic sex-aggregation pheromone and insecticide on Le. infantum transmission Lu. longipalpis had been continuously exposed to insecticide for 30 months. The objective of this study was to determine the effect of continuous exposure to the insecticides used in the trial on the susceptibility of Lu. longipalpis population. METHODS: During the trial the sand flies had been exposed to either lambda-cyhalothrin [pheromone + residual insecticide spray (PI)], deltamethrin [dog collars (DC)] or no insecticide [control (C)], for 30 months (November 2012 to April 2015). The insecticide treatment regime was kept in place for an additional 12 months (May 2015-April 2016) during this susceptibility study. Sand flies collected from the field were exposed to WHO insecticide-impregnated papers cyhalothrin (0.05%), deltamethrin (0.5%) and control (silicone oil) in a modified WHO insecticide exposure trial to determine their susceptibility. RESULTS: We collected 788 Lu. longipalpis using CDC-light traps in 31 municipalities across the three trial arms. Probit analysis showed that the knockdown times (KDTs) of Lu. longipalpis collected from the lambda-cyhalothrin exposed PI-arm [KDT50: 31.1 min, confidence interval (CI): 29.6-32.6 and KDT90: 44.2 min, CI: 42.1-46.7] were longer than the KDTs from the non-insecticide-treated C-arm (KDT50: 26.3 min, CI: 25.1-27.6 and KDT90: 38.2, CI: 36.5-40.2) (no-overlapping 95% CIs). KDTs of Lu. longipalpis collected from the deltamethrin exposed DC-arm had similar values (KDT50: 13.7 min, CI: 10.1-16.2 and KDT90: 26.7 min, CI: 21.8-30.6) to those for the C-arm (KDT50: 13.5 min; CI: 12.2-14.8 and KDT90: 23.2 min, CI: 21.4-25.4) (overlapping CIs). The wild-caught unexposed Lu. longipalpis (C-arm), took approximately twice as long to knock down as laboratory-colonised specimens for both insecticides. CONCLUSIONS: Our study reveals slight changes in KDT, in sand flies after prolonged exposure to lambda-cyhalothrin in the presence of pheromone. These changes are not considered to have reached the reference levels indicative of resistance in sand flies suggesting that pheromone and insecticide treatment at the level indicated in this study do not constitute a significant risk of increased insecticide resistance. Prolonged exposure to deltamethrin in dog collars did not result in changes to KDT.


Assuntos
Resistência a Inseticidas , Inseticidas , Leishmaniose Visceral , Controle de Mosquitos , Mosquitos Vetores , Psychodidae , Animais , Feminino , Masculino , Resistência a Inseticidas/efeitos dos fármacos , Inseticidas/farmacologia , Leishmania infantum/fisiologia , Leishmaniose Visceral/parasitologia , Leishmaniose Visceral/transmissão , Mosquitos Vetores/efeitos dos fármacos , Nitrilas/farmacologia , Psychodidae/efeitos dos fármacos , Piretrinas/farmacologia , Atrativos Sexuais/farmacologia , Fatores de Tempo
7.
Med Vet Entomol ; 32(2): 162-174, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29165810

RESUMO

In Mexico, mosquito vector-borne diseases are of public health concern as a result of their impact on human morbidity and mortality. The use of insecticides against adult mosquitoes is one of the most common ways of controlling mosquito population densities. However, the use of these compounds has resulted in the development of insecticide resistance. The aim of this study was to estimate susceptibility to six pyrethroids, two carbamates and two organophosphates in Mexican populations of Stegomyia aegypti (Linnaeus, 1762) (= Aedes aegypti) (Diptera: Culicidae) mosquitoes. Bottle insecticide susceptibility tests, with 1 h exposure, were performed on adult mosquitoes from 75 localities across 28 states. At 30 min of exposure, the proportion of fallen mosquitoes was recorded. After 60 min of exposure, mosquitoes were recovered in non-treated containers and mortality was determined at 24 h after the set-up of the experiment. In general, the carbamate insecticides represented the most effective group in terms of the proportion of mosquitoes fallen at 30 min (72-100%) and 24-h mortality (97-100%). High and widespread resistance to pyrethroids Types I and II and, to a lesser extent, to organophosphates was observed. Insecticide susceptibility among and within states was highly variable.


Assuntos
Aedes/efeitos dos fármacos , Carbamatos/farmacologia , Resistência a Inseticidas , Inseticidas/farmacologia , Organofosfatos/farmacologia , Piretrinas/farmacologia , Animais , Feminino , México
8.
Chemosphere ; 93(6): 1111-6, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23830118

RESUMO

Secondary pest outbreak is a counterintuitive ecological backlash of pesticide use in agriculture that takes place with the increase in abundance of a non-targeted pest species after pesticide application against a targeted pest species. Although the phenomenon was well recognized, its alternative causes are seldom considered. Outbreaks of the southern red mite Oligonychus ilicis are frequently reported in Brazilian coffee farms after the application of pyrethroid insecticides against the coffee leaf miner Leucoptera coffeella. Selectivity favoring the red mite against its main predatory mites is generally assumed as the outbreak cause, but this theory has never been tested. Here, we assessed the toxicity (and thus the selectivity) of deltamethrin against both mite species: the southern red mite and its phytoseid predator Amblyseius herbicolus. Additionally, behavioral avoidance and deltamethrin-induced hormesis were also tested as potential causes of red mite outbreak using free-choice behavioral walking bioassays with the predatory mite and life-table experiments with both mite species, respectively. Lethal toxicity bioassays indicated that the predatory mite was slightly more susceptible than its prey (1.5×), but in more robust demographic bioassays, the predator was three times more tolerant to deltamethrin than its prey, indicating that predator susceptibility to deltamethrin is not a cause of the reported outbreaks. The predator did not exhibit behavioral avoidance to deltamethrin; however insecticide-induced hormesis in the red mite led to its high population increase under low doses, which was not observed for the predatory mite. Therefore, deltamethrin-induced hormesis is a likely cause of the reported red mite outbreaks.


Assuntos
Comportamento Animal/efeitos dos fármacos , Inseticidas/toxicidade , Nitrilas/toxicidade , Piretrinas/toxicidade , Tetranychidae/efeitos dos fármacos , Animais , Brasil , Hormese , Lepidópteros/efeitos dos fármacos
9.
Mem. Inst. Oswaldo Cruz ; 106(8): 993-996, Dec. 2011. tab
Artigo em Inglês | LILACS | ID: lil-610975

RESUMO

A susceptible strain of Aedes albopictus derived from the Gainesville strain (Florida, USA) was established in our laboratory. The larvicidal efficacies of the neurotoxic insecticides temephos, permethrin and the pure cis and trans-permethrin isomers and the microbial insecticide Bacillus thuringiensis israelensis (Bti) against Ae. albopictus were estimated and compared to a susceptible strain of Aedes aegypti. The larvicidal effect of insect growth regulator pyriproxyfen was also evaluated in both mosquito strains. The median lethal concentration/median emergency inhibition values for Ae. aegypti and Ae. albopictus, respectively, were: temephos, 3.058 and 6.632 ppb, permethrin, 3.143 and 4.933 ppb, cis-permethrin, 4.457 and 10.068 ppb, trans-permethrin, 1.510 and 3.883 ppb, Bti, 0.655 and 0.880 ppb and pyriproxyfen, 0.00774 and 0.01642 ppb. Ae. albopictus was more tolerant than Ae. aegypti to all six larvicides evaluated. The order of susceptibility for Ae. aegypti was pyriproxyfen > Bti > trans-permethrin > temephos > permethrin > cis-permethrin and for Ae. albopictus was pyriproxyfen > Bti > trans-permethrin > permethrin > temephos > cis-permethrin. Because both species can be found together in common urban, suburban and rural breeding sites, the results of this work provide baseline data on the susceptibility of Ae. albopictus to insecticides commonly used for controlling Ae. aegypti in the field.


Assuntos
Animais , Aedes , Inseticidas , Permetrina , Temefós , Bacillus thuringiensis , Resistência a Inseticidas , Laboratórios , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA