Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 193
Filtrar
1.
Adv Exp Med Biol ; 2024 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-38954247

RESUMO

According to the World Health Organization vector-borne diseases account for more than 17% of all infectious diseases, causing more than 700,000 deaths annually. Vectors are organisms that are able to transmit infectious pathogens between humans, or from animals to humans. Many of these vectors are hematophagous insects, which ingest the pathogen from an infected host during a blood meal, and later transmit it into a new host. Malaria, dengue, African trypanosomiasis, yellow fever, leishmaniasis, Chagas disease, and many others are examples of diseases transmitted by insects.Both the diet and the infection with pathogens trigger changes in many metabolic pathways, including lipid metabolism, compared to other insects. Blood contains mostly proteins and is very poor in lipids and carbohydrates. Thus, hematophagous insects attempt to efficiently digest and absorb diet lipids and also rely on a large de novo lipid biosynthesis based on utilization of proteins and carbohydrates as carbon source. Blood meal triggers essential physiological processes as molting, excretion, and oogenesis; therefore, lipid metabolism and utilization of lipid storage should be finely synchronized and regulated regarding that, in order to provide the necessary energy source for these events. Also, pathogens have evolved mechanisms to hijack essential lipids from the insect host by interfering in the biosynthesis, catabolism, and transport of lipids, which pose challenges to reproduction, survival, fitness, and other insect traits.In this chapter, we have tried to collect and highlight the current knowledge and recent discoveries on the metabolism of lipids in insect vectors of diseases related to the hematophagous diet and pathogen infection.

2.
Malar J ; 23(1): 165, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38796456

RESUMO

BACKGROUND: Mexico has experienced a significant reduction in malaria cases over the past two decades. Certification of localities as malaria-free areas (MFAs) has been proposed as a steppingstone before elimination is achieved throughout the country. The Mexican state of Quintana Roo is a candidate for MFA certification. Monitoring the status of insecticide susceptibility of major vectors is crucial for MFA certification. This study describes the susceptibility status of Anopheles albimanus, main malaria vector, from historically important malaria foci in Quintana Roo, using both phenotypic and genotypic approaches. METHODS: Adult mosquito collections were carried out at three localities: Palmar (Municipality of Othon P. Blanco), Buenavista (Bacalar) and Puerto Morelos (Puerto Morelos). Outdoor human-landing catches were performed by pairs of trained staff from 18:00 to 22:00 during 3-night periods at each locality during the rainy season of 2022. Wild-caught female mosquitoes were exposed to diagnostic doses of deltamethrin, permethrin, malathion, pirimiphos-methyl or bendiocarb using CDC bottle bioassays. Mortality was registered at the diagnostic time and recovery was assessed 24 h after exposure. Molecular analyses targeting the Voltage-Gated Sodium Channel (vgsc) gene and acetylcholinesterase (ace-1) gene were used to screen for target site polymorphisms. An SNP analysis was carried out to identify mutations at position 995 in the vgsc gene and at position 280 in the ace-1 gene. RESULTS: A total of 2828 anophelines were collected. The main species identified were Anopheles albimanus (82%) and Anopheles vestitipennis (16%). Mortalities in the CDC bottle bioassay ranged from 99% to 100% for all the insecticides and mosquito species. Sequence analysis was performed on 35 An. albimanus across the three localities; of those, 25 were analysed for vgsc and 10 for ace-1 mutations. All individuals showed wild type alleles. CONCLUSION: The results demonstrated that An. albimanus populations from historical malaria foci in Quintana Roo are susceptible to the main insecticides used by the Ministry of Health.


Assuntos
Anopheles , Resistência a Inseticidas , Inseticidas , Mosquitos Vetores , Animais , Anopheles/genética , Anopheles/efeitos dos fármacos , Inseticidas/farmacologia , Resistência a Inseticidas/genética , México , Feminino , Mosquitos Vetores/genética , Mosquitos Vetores/efeitos dos fármacos , Malária/transmissão
3.
J Med Entomol ; 61(4): 984-994, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38635291

RESUMO

The cosmopolitan ectoparasite human head louse, Pediculus humanus capitis (De Geer)(Phthiraptera:Pediculidae), affects mostly school-aged children, with infestations reported every year mainly due to louse resistance to pyrethroids. One of the main resistance mechanisms of pyrethroids is the target site insensitivity (kdr), which is caused by single-nucleotide point mutations (SNPs) located in the voltage-sensitive sodium channel gene. In this study, we analyzed individual head lice toxicologically via the description of their susceptibility profile to permethrin and genetically through the genotypification of their kdr alleles as well as nuclear microsatellite loci. Lice were collected from 4 schools in the city of Buenos Aires, Argentina. The resistance ratios varied from 33.3% to 71.4%, with a frequency of the T917I kdr mutation of 87.31% and with 83.6% of the head lice being homozygous resistant to pyrethroids. Microsatellite data indicated that all the louse school populations had genotype proportions that deviated from Hardy-Weinberg expectations, with FIS > 0 reflecting a deficit of heterozygotes. Bottleneck analysis suggested that all louse school populations underwent a recent reduction in population sizes, while 3 of the 4 schools had gene flow values around 1, indicating ongoing gene flow among those schools. Our study suggests that school louse populations in the city of Buenos Aires may form a metapopulation, where each school represents a small population that undergoes extinction and recolonization processes under strong permethrin selection. This is the first multilevel analysis integrating toxicological, kdr-genotyping, and microsatellite data in human louse populations.


Assuntos
Resistência a Inseticidas , Inseticidas , Pediculus , Permetrina , Animais , Permetrina/farmacologia , Pediculus/genética , Pediculus/efeitos dos fármacos , Argentina , Resistência a Inseticidas/genética , Inseticidas/farmacologia , Variação Genética , Repetições de Microssatélites , Humanos , Feminino , Masculino
4.
Genes (Basel) ; 14(10)2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-37895241

RESUMO

Indoor residual spray (IRS), mainly employing pyrethroid insecticides, is the most common intervention for preventing malaria transmission in many regions of Latin America; the use of long-lasting insecticidal nets (LLINs) has been more limited. Knockdown resistance (kdr) is a well-characterized target-site resistance mechanism associated with pyrethroid and DDT resistance. Most mutations detected in acetylcholinesterase-1 (Ace-1) and voltage-gated sodium channel (VGSC) genes are non-synonymous, resulting in a change in amino acid, leading to the non-binding of the insecticide. In the present study, we analyzed target-site resistance in Nyssorhynchus darlingi, the primary malaria vector in the Amazon, in multiple malaria endemic localities. We screened 988 wild-caught specimens of Ny. darlingi from three localities in Amazonian Peru and four in Amazonian Brazil. Collections were conducted between 2014 and 2021. The criteria were Amazonian localities with a recent history as malaria hotspots, primary transmission by Ny. darlingi, and the use of both IRS and LLINs as interventions. Fragments of Ace-1 (456 bp) and VGSC (228 bp) were amplified, sequenced, and aligned with Ny. darlingi sequences available in GenBank. We detected only synonymous mutations in the frequently reported Ace-1 codon 280 known to confer resistance to organophosphates and carbamates, but detected three non-synonymous mutations in other regions of the gene. Similarly, no mutations linked to insecticide resistance were detected in the frequently reported codon (995) at the S6 segment of domain II of VGSC. The lack of genotypic detection of insecticide resistance mutations by sequencing the Ace-1 and VGSC genes from multiple Ny. darlingi populations in Brazil and Peru could be associated with low-intensity resistance, or possibly the main resistance mechanism is metabolic.


Assuntos
Anopheles , Inseticidas , Malária , Piretrinas , Canais de Sódio Disparados por Voltagem , Animais , Acetilcolinesterase/genética , Anopheles/genética , Resistência a Inseticidas/genética , Brasil , Peru/epidemiologia , Mosquitos Vetores/genética , Inseticidas/farmacologia , Mutação , Piretrinas/farmacologia , Canais de Sódio Disparados por Voltagem/genética , Códon
5.
Genes (Basel) ; 14(8)2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37628677

RESUMO

Aedes aegypti transmits major arboviruses of public health importance, including dengue, chikungunya, Zika, and yellow fever. The use of insecticides represents the cornerstone of vector control; however, insecticide resistance in Ae. aegypti has become widespread. Understanding the molecular basis of insecticide resistance in this species is crucial to design effective resistance management strategies. Here, we applied Illumina RNA-Seq to study the gene expression patterns associated with resistance to three widely used insecticides (malathion, alphacypermethrin, and lambda-cyhalothrin) in Ae. aegypti populations from two sites (Manatí and Isabela) in Puerto Rico (PR). Cytochrome P450s were the most overexpressed detoxification genes across all resistant phenotypes. Some detoxification genes (CYP6Z7, CYP28A5, CYP9J2, CYP6Z6, CYP6BB2, CYP6M9, and two CYP9F2 orthologs) were commonly overexpressed in mosquitoes that survived exposure to all three insecticides (independent of geographical origin) while others including CYP6BY1 (malathion), GSTD1 (alpha-cypermethrin), CYP4H29 and GSTE6 (lambda-cyhalothrin) were uniquely overexpressed in mosquitoes that survived exposure to specific insecticides. The gene ontology (GO) terms associated with monooxygenase, iron binding, and passive transmembrane transporter activities were significantly enriched in four out of six resistant vs. susceptible comparisons while serine protease activity was elevated in all insecticide-resistant groups relative to the susceptible strain. Interestingly, cuticular-related protein genes (chinase and chitin) were predominantly downregulated, which was also confirmed in the functional enrichment analysis. This RNA-Seq analysis presents a detailed picture of the candidate detoxification genes and other pathways that are potentially associated with pyrethroid and organophosphate resistance in Ae. aegypti populations from PR. These results could inform development of novel molecular tools for detection of resistance-associated gene expression in this important arbovirus vector and guide the design and implementation of resistance management strategies.


Assuntos
Aedes , Inseticidas , Infecção por Zika virus , Zika virus , Animais , Transcriptoma , Inseticidas/farmacologia , Aedes/genética , Malation , Porto Rico , Resistência a Inseticidas/genética , Mosquitos Vetores
6.
Pest Manag Sci ; 79(12): 5349-5361, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37624650

RESUMO

BACKGROUND: Laboratory-selected resistant strains of Euschistus heros to thiamethoxam (NEO) and lambda-cyhalothrin (PYR) were recently reported in Brazil. However, the mechanisms conferring resistance to these insecticides in E. heros remain unresolved. We utilized comparative transcriptome profiling and single nucleotide polymorphism (SNP) calling of susceptible and resistant strains of E. heros to investigate the molecular mechanism(s) underlying resistance. RESULTS: The E. heros transcriptome was assembled, generating 91 673 transcripts with a mean length of 720 bp and N50 of 1795 bp. Comparative gene expression analysis between the susceptible (SUS) and NEO strains identified 215 significantly differentially expressed (DE) transcripts. DE transcripts associated with the xenobiotic metabolism were all up-regulated in the NEO strain. The comparative analysis of the SUS and PYR strains identified 204 DE transcripts, including an esterase (esterase FE4), a glutathione-S-transferase, an ABC transporter (ABCC1) and aquaporins that were up-regulated in the PYR strain. We identified 9588 and 15 043 nonsynonymous SNPs in the PYR and NEO strains. One of the SNPs (D70N) detected in the NEO strain occurs in a subunit (α5) of the nAChRs, the target site of neonicotinoid insecticides. Nevertheless, this residue position in α5 is not conserved among insects. CONCLUSIONS: Neonicotinoid and pyrethroid resistance in laboratory-selected E. heros is associated with a potential metabolic resistance mechanism by the overexpression of proteins commonly involved in the three phases of xenobiotic metabolism. Together these findings provide insight into the potential basis of resistance in E. heros and will inform the development and implementation of resistance management strategies against this important pest. © 2023 Society of Chemical Industry.


Assuntos
Heterópteros , Inseticidas , Nitrilas , Piretrinas , Animais , Tiametoxam , Inseticidas/farmacologia , Neonicotinoides/farmacologia , Transcriptoma , Xenobióticos , Piretrinas/farmacologia , Perfilação da Expressão Gênica , Esterases
7.
Biomedica ; 43(2): 222-243, 2023 06 30.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37433163

RESUMO

Introduction. The development of resistance to insecticides in Aedes aegypti represents a major threat to public health. Surveillance and monitoring of the behavior of bioefficacy and susceptibility of insecticides is of fundamental importance to prolong the useful life of insecticide molecules. Objective. To evaluate the bioefficacy and susceptibility of the insecticides deltamethrin and cyfluthrin in Aedes aegypti during the zika epidemic outbreak in Kuna Yala, Panama. Methods and materials. The bioefficacy and susceptibility of deltamethrin and cyfluthrin in Aedes aegypti Ustupo using WHO standardized bioassays during the Zika epidemic outbreak in Kuna Yala, Panama. Results. In the bioassays with Aedes aegypti Ustupo, possible resistance to deltamethrin and cyfluthrin was observed, with a mortality rate of 95,3% and 94%, respectively. The bioefficacy results with Aedes aegypti Ustupo registered low bioefficacy of deltamethrin and cyfluthrin with average percentages of mortality in the intradomicile of 75% and 31,1%, respectively, while in the peridomicile it was 63,7% and 26,1%, respectively. Conclusion. The results of this study represent a challenge that the National Aedes Control Program must face in order to care for and maintain the toxic effect of insecticides applied against Aedes populations. It is necessary for the National Aedes Control Program to establish a resistance management program to evaluate resistance and its distribution in order to guarantee the sustainability of anti-vector interventions against Aedes populations.


Introducción. El desarrollo de la resistencia a insecticidas de Aedes aegypti representa una gran amenaza para la salud pública. La vigilancia y el monitoreo de la eficacia biológica a los insecticidas y la sensibilidad de las poblaciones de Aedes aegypti es de fundamental importancia para prolongar la vida útil de estas moléculas. Objetivo. Evaluar la eficacia biológica de los insecticidas deltametrina y ciflutrina y la sensibilidad de poblaciones de Aedes aegypti a estos insecticidas durante el brote epidémico de virus del Zika en Kuna Yala, Panamá. Métodos y materiales. Se evaluó la eficacia biológica de la deltametrina y la ciflutrina, y la sensibilidad a estos insecticidas de poblaciones de la cepa Aedes aegypti Ustupo, mediante bioensayos estandarizados por la Organización Mundial de la Salud durante el brote epidémico de virus del Zika en Kuna Yala, Panamá. Resultados. En los bioensayos con Aedes aegypti Ustupo se observó posible resistencia a deltametrina y a ciflutrina con un porcentaje de mortalidad del 95,3 y 94 %, respectivamente. Se registró baja eficacia biológica con la cepa Aedes aegypti Ustupo para la deltametrina y la ciflutrina, con medias de porcentajes de mortalidad de 75 y 31,1 %, en el intradomicilio, mientras que en el peridomicilio fue de 63,7 y 26,1 %, respectivamente. Conclusión. Los resultados de este estudio representan un desafío que debe enfrentar el Programa Nacional de Control de Aedes para lograr cuidar y mantener el efecto tóxico de los insecticidas aplicados contra las poblaciones de Aedes. Es necesario que el Programa Nacional de Control de Aedes establezca unos lineamientos de manejo de la resistencia para caracterizarla y evaluar la distribución geográfica de las poblaciones afectadas. Lo anterior con el propósito de garantizar la sostenibilidad de las intervenciones antivectoriales contra las poblaciones de Aedes.


Assuntos
Aedes , Inseticidas , Piretrinas , Infecção por Zika virus , Zika virus , Animais , Panamá , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/prevenção & controle , Surtos de Doenças
8.
Biomedica ; 43(2): 296-304, 2023 06 30.
Artigo em Inglês, Espanhol | MEDLINE | ID: mdl-37433166

RESUMO

Introduction. Dengue is a public health problem in La Guajira region. Control has focused on the vector using insecticides, including organophosphates. Objective. To evaluate the state of susceptibility to organophosphates insecticides in fifteen Aedes aegypti (L.) populations in La Guajira, Colombia. Materials and methods. We collected samples of third-instar larvae and adult mosquitoes of Ae. aegypti in the municipalities of Albania, Barrancas, Dibulla, Distracción, El Molino, Fonseca, Hatonuevo, La Jagua del Pilar, Maicao, Manaure, Riohacha, San Juan del Cesar, Uribia, Urumita, Villanueva. Bioassays for temefos, malathion, and pirimiphos-methyl were carried out following the methodology of the World Health Organization, and the bottle technique using the guidance of the Centers for Disease Control and Prevention. Susceptibility to temefos was determined through the resistance ratio between lethal concentration 50 and lethal concentration 95; for the compounds temefos, malathion and pirimiphos-methyl, susceptibility was calculated using diagnostic dose and diagnostic time in the populations evaluated. Rockefeller susceptible strain was used as a control. Results: All evaluated populations of Ae. aegypti from La Guajira were found to be susceptible to temefos (ratio resistance to CL50<5.0; ratio resistance to CL95<5.0; 98 - 100 % mortality); pirimiphosmethyl (99 - 100 % mortality), and malathion (100 % mortality). Conclusion. Based on the results, the use of temefos, malathion, and pirimiphosmethyl is feasible for the control of Ae. aegypti in the evaluated populations.


Introducción. El dengue es un problema de salud pública para el departamento de La Guajira. El control se ha enfocado en el vector con el uso de insecticidas, entre ellos los organofosforados. Objetivo. Evaluar el estado de la sensibilidad a insecticidas organofosforados de quince poblaciones de Aedes aegypti (L.) en el departamento de La Guajira, Colombia. Materiales y métodos. Se realizaron bioensayos para temefos, malatión y metil-pirimifos en larvas de tercer estadio y mosquitos adultos de Ae. aegypti en los municipios de Albania, Barrancas, Dibulla, Distracción, El Molino, Fonseca, Hatonuevo, La Jagua del Pilar, Maicao, Manaure, Riohacha, San Juan del Cesar, Uribia, Urumita y Villanueva, siguiendo la metodología de la Organización Mundial de la Salud (OMS) y la técnica de botellas usando la guía de los de los Centers for Disease Control and Prevention, respectivamente. Se determinó la sensibilidad por medio de la razón de resistencia a CL50 y CL95 (RRCL50, RRCL95) para temefos y a dosis y tiempo diagnóstico para temefos, malatión y metilpirimifos en las poblaciones de campo evaluadas, usando como control la cepa sensible Rockefeller. Resultados. Las 15 poblaciones del departamento de La Guajira son sensibles a: temefos (razón de la resistencia a RRCL50<5,0; relación de resistencia a CL95<5,0; 98 a 100 % de mortalidad); metil-pirimifos (99 a 100 % de mortalidad) y malatión (100 % de mortalidad). Conclusión. Con base en los resultados obtenidos, es factible el uso de temefos, malatión y metil-pirimifos para el control de Ae. aegypti en las poblaciones evaluadas.


Assuntos
Aedes , Estados Unidos , Animais , Organofosfatos , Colômbia , Temefós , Mosquitos Vetores
9.
Acta Trop ; 245: 106969, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37328120

RESUMO

Chemical control plays a central role in interrupting the vector transmission of Chagas disease. In recent years, high levels of resistance to pyrethroids have been detected in the main vector Triatoma infestans, which were associated with less effectiveness in chemical control campaigns in different regions of Argentina and Bolivia. The presence of the parasite within its vector can modify a wide range of insect physiological processes, including toxicological susceptibility and the expression of resistance to insecticides. This study examined for the first time the possible effects of Trypanosoma cruzi infection on susceptibility and resistance to deltamethrin in T. infestans. Using WHO protocol resistance monitoring assays, we exposed resistant and susceptible strains of T. infestans, uninfected and infected with T. cruzi to different concentrations of deltamethrin in fourth-instar nymphs at days 10-20 post-emergence and monitored survival at 24, 48, and 72 h. Our findings suggest that the infection affected the toxicological susceptibility of the susceptible strain, showing higher mortality than uninfected susceptible insects when exposed to both deltamethrin and acetone. On the other hand, the infection did not affect the toxicological susceptibility of the resistant strain, infected and uninfected showed similar toxic responses and the resistance ratios was not modified. This is the first report of the effect of T. cruzi on the toxicological susceptibility of T. infestans and triatomines in general and, to our knowledge, one of the few on the effect of a parasite on the insecticide susceptibility of its insect vector.


Assuntos
Doença de Chagas , Inseticidas , Piretrinas , Triatoma , Trypanosoma cruzi , Animais , Triatoma/parasitologia , Resistência a Inseticidas , Piretrinas/toxicidade , Inseticidas/toxicidade , Nitrilas/toxicidade
10.
Biomédica (Bogotá) ; Biomédica (Bogotá);43(2): 222-243, jun. 2023.
Artigo em Espanhol | LILACS | ID: biblio-1533927

RESUMO

Introducción. El desarrollo de la resistencia a insecticidas de Aedes aegypti representa una gran amenaza para la salud pública. La vigilancia y el monitoreo de la eficacia biológica a los insecticidas y la sensibilidad de las poblaciones de Aedes aegypti es de fundamental importancia para prolongar la vida útil de estas moléculas. Objetivo. Evaluar la eficacia biológica de los insecticidas deltametrina y ciflutrina y la sensibilidad de poblaciones de Aedes aegypti a estos insecticidas durante el brote epidémico de virus del Zika en Kuna Yala, Panamá. Materiales y métodos. Se evaluó la eficacia biológica de la deltametrina y la ciflutrina, y la sensibilidad a estos insecticidas de poblaciones de la cepa Aedes aegypti Ustupo, mediante bioensayos estandarizados por la Organización Mundial de la Salud durante el brote epidémico de virus del Zika en Kuna Yala, Panamá. Resultados. En los bioensayos con Aedes aegypti Ustupo se observó posible resistencia a deltametrina y a ciflutrina con un porcentaje de mortalidad del 95,3 y 94 %, respectivamente. Se registró baja eficacia biológica con la cepa Aedes aegypti Ustupo para la deltametrina y la ciflutrina, con medias de porcentajes de mortalidad de 75 y 31,1 %, en el intradomicilio, mientras que en el peridomicilio fue de 63,7 y 26,1 %, respectivamente. Conclusión. Los resultados de este estudio representan un desafío que debe enfrentar el Programa Nacional de Control de Aedes para lograr cuidar y mantener el efecto tóxico de los insecticidas aplicados contra las poblaciones de Aedes. Es necesario que el Programa Nacional de Control de Aedes establezca unos lineamientos de manejo de la resistencia para caracterizarla y evaluar la distribución geográfica de las poblaciones afectadas. Lo anterior con el propósito de garantizar la sostenibilidad de las intervenciones antivectoriales contra las poblaciones de Aedes.


Introduction. The development of resistance to insecticides in Aedes aegypti represents a major threat to public health. Surveillance and monitoring of the biological efficacy and sensibility of Aedes aegypti populations to insecticides is fundamental to prolong the useful life of insecticide molecules. Objective. To evaluate the biological efficacy of deltamethrin and cyfluthrin and sensibility to insecticides in Aedes aegypti during the zika epidemic outbreak in Kuna Yala, Panama. Materials and methods. We assessed the biological efficacy of deltamethrin and cyfluthrin, and sensibility in the strain Aedes aegypti Ustupo using bioassays standardized by the World Health Organization during the Zika epidemic outbreak in Kuna Yala, Panama. Results. In the bioassays with Aedes aegypti Ustupo, we observed a possible resistance to deltamethrin and cyfluthrin with a mortality rate of 95,3 and 94%, respectively. The obtained results registered low biological efficacy of deltamethrin and cyfluthrin with average percentages of mortality of 75 and 31.1% in the intradomicile, and 63,7 and 26.1% in the peridomicile. Conclusion. The results of this study represent a challenge for the National Aedes Control Program to care for and maintain the toxic effect of insecticides applied against Aedes populations. There is a need for the National Aedes Control Program to establish some guidelines about resistance assessment and resistant populations' geographic distribution to guarantee the sustainability of anti-vector interventions against Aedes populations.


Assuntos
Resistência a Inseticidas , Aedes , Zika virus , Controle de Vetores de Doenças , Dengue
11.
Biomédica (Bogotá) ; Biomédica (Bogotá);43(2): 296-304, jun. 2023. tab, graf
Artigo em Espanhol | LILACS | ID: biblio-1533938

RESUMO

Introducción. El dengue es un problema de salud pública para el departamento de La Guajira. El control se ha enfocado en el vector con el uso de insecticidas, entre ellos los organofosforados. Objetivo. Evaluar el estado de la sensibilidad a insecticidas organofosforados de quince poblaciones de Aedes aegypti (L.) en el departamento de La Guajira, Colombia. Materiales y métodos. Se realizaron bioensayos para temefos, malatión y pirimifos- metil en larvas de tercer estadio y mosquitos adultos de Ae. aegypti en los municipios de Albania, Barrancas, Dibulla, Distracción, El Molino, Fonseca, Hatonuevo, La Jagua del Pilar, Maicao, Manaure, Riohacha, San Juan del Cesar, Uribia, Urumita y Villanueva, siguiendo la metodología de la Organización Mundial de la Salud (OMS) y la técnica de botellas usando la guía de los de los Centers for Disease Control and Prevention, respectivamente. Se determinó la sensibilidad por medio de la relación de resistencia a CL50 y CL95 (RRCL50, RRCL95) para temefos y a dosis y tiempo diagnóstico para temefos, malatión y pirimifos-metil en las poblaciones de campo evaluadas, usando como control la cepa sensible Rockefeller. Resultados. Las 15 poblaciones del departamento de La Guajira son sensibles a: temefos (relación de la resistencia a CL50<5,0; relación de resistencia a CL95<5,0; 98 a 100 % de mortalidad); pirimifos-metil (99 a 100 % de mortalidad) y malatión (100 % de mortalidad). Conclusión. Con base en los resultados obtenidos, es factible el uso de temefos, malatión y pirimifos-metil para el control de Ae. aegypti en las poblaciones evaluadas.


Introduction. Dengue is a public health problem in La Guajira region. Control has focused on the vector using insecticides, including organophosphates. Objective. To evaluate the state of susceptibility to organophosphates insecticides in fifteen Aedes aegypti (L.) populations in La Guajira, Colombia. Materials and methods. We collected samples of third-instar larvae and adult mosquitoes of Ae. aegypti in the municipalities of Albania, Barrancas, Dibulla, Distracción, El Molino, Fonseca, Hatonuevo, La Jagua del Pilar, Maicao, Manaure, Riohacha, San Juan del Cesar, Uribia, Urumita, Villanueva. Bioassays for temefos, malathion, and pirimiphos-methyl were carried out following the methodology of the World Health Organization, and the bottle technique using the guidance of the Centers for Disease Control and Prevention. Susceptibility to temefos was determined through the resistance ratio between lethal concentration 50 and lethal concentration 95; for the compounds temefos, malathion and pirimiphos-methyl, susceptibility was calculated using diagnostic dose and diagnostic time in the populations evaluated. Rockefeller susceptible strain was used as a control. Results. All evaluated populations of Ae. aegypti from La Guajira were found to be susceptible to temefos (ratio resistance to CL50<5.0; ratio resistance to CL95<5.0; 98 - 100 % mortality); pirimiphosmethyl (99 - 100 % mortality), and malathion (100 % mortality). Conclusion. Based on the results, the use of temefos, malathion, and pirimiphosmethyl is feasible for the control of Ae. aegypti in the evaluated populations.


Assuntos
Aedes , Inseticidas Organofosforados , Temefós , Resistência a Inseticidas , Colômbia , Malation
12.
Artigo em Inglês | MEDLINE | ID: mdl-36901269

RESUMO

Chiapas State comprises the largest malaria foci from Mexico, and 57% of the autochthonous cases in 2021, all with Plasmodium vivax infections, were reported in this State. Southern Chiapas is at constant risk of cases imported due to migratory human flow. Since chemical control of vector mosquitoes is the main entomological action implemented for the prevention and control of vector-borne diseases, this work aimed to investigate the susceptibility of Anopheles albimanus to insecticides. To this end, mosquitoes were collected in cattle in two villages in southern Chiapas in July-August 2022. Two methods were used to evaluate the susceptibility: the WHO tube bioassay and the CDC bottle bioassay. For the latter, diagnostic concentrations were calculated. The enzymatic resistance mechanisms were also analyzed. CDC diagnostic concentrations were obtained; 0.7 µg/mL deltamethrin, 12 µg/mL permethrin, 14.4 µg/mL malathion, and 2 µg/mL chlorpyrifos. Mosquitoes from Cosalapa and La Victoria were susceptible to organophosphates and to bendiocarb, but resistant to pyrethroids, with mortalities between 89% and 70% (WHO), and 88% and 78% (CDC), for deltamethrin and permethrin, respectively. High esterase levels are suggested as the resistance mechanism involved in the metabolism of pyrethroids in mosquitoes from both villages. Mosquitoes from La Victoria might also involve cytochrome P450. Therefore, organophosphates and carbamates are suggested to currently control An. albimanus. Its use might reduce the frequency of resistance genes to pyrethroids and vector abundance and may impede the transmission of malaria parasites.


Assuntos
Anopheles , Clorpirifos , Inseticidas , Malária , Piretrinas , Humanos , Animais , Bovinos , Permetrina , México , Resistência a Inseticidas/genética , Controle de Mosquitos/métodos , Malária/prevenção & controle , Mosquitos Vetores , Inseticidas/farmacologia
13.
Bull Entomol Res ; 113(3): 419-429, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36920057

RESUMO

The South American tomato moth, Phthorimaea absoluta (Meyrick), is one of the key pests of tomato in India. Since its report in 2014, chemical control has been the main means of tackling this pest, both in the open field and protected cultivation. Despite regular insecticidal sprays, many outbreaks were reported from major tomato-growing regions of South India during 2019-2020. A study was conducted to investigate the effect of insecticide resistance on biology, biochemical enzymes, and gene expression in various P. absoluta field populations viz., Bangalore, Kolar, Madurai, Salem, and Anantapur to commonly used insecticides such as flubendiamide, cyantraniliprole, and indoxacarb. Increased levels of insecticide resistance ratios (RR) were recorded in P. absoluta populations of different locations. A significant increase in cytochrome P450 monooxygenase (CYP/MFO) and esterase levels was noticed in the resistant population compared to susceptible one. Through molecular studies, we identified four new CYP genes viz., CYP248f (flubendiamide), CYP272c, CYP724c (cyantraniliprole), and CYP648i (indoxacarb). The expression levels of these genes significantly increased as the folds of resistance increased from G1 to G20 (generation), indicating involvement of the identified genes in insecticide resistance development in P. absoluta. In addition, the resistant populations showed decreased fecundity, increased larval development period, and adult longevity, resulting in more crop damage. The information generated in the present study thus helps in understanding the development of insecticide resistance by P. absoluta and suggests the farmers and researchers to use insecticides wisely by adopting insecticide resistance management as a strategy under integrated pest management.


Assuntos
Inseticidas , Mariposas , Solanum lycopersicum , Animais , Inseticidas/farmacologia , Resistência a Inseticidas/genética , Índia , América do Sul , Larva
14.
Pest Manag Sci ; 79(6): 2206-2219, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36750418

RESUMO

BACKGROUND: Spodoptera frugiperda (J. E. Smith) is a widespread agricultural pest with several records of resistance to different insecticides and Bt proteins, including the neurotoxic insecticides chlorpyrifos (organophosphate) and lambda-cyhalothrin (pyrethroid). Here, we (i) characterized and monitored the susceptibility of field populations of S. frugiperda to chlorpyrifos (194 populations) and lambda-cyhalothrin (197 populations) collected from major maize-growing regions of Brazil from 2003 to 2016, and (ii) compared gene expression levels of laboratory-selected, chlorpyrifos- and lambda-cyhalothrin-resistant strains to a susceptible reference strain (Sf-ss) of S. frugiperda. RESULTS: The susceptibility monitoring detected average survival ranging from 29.3% to 36.0% for chlorpyrifos, and 23.1% to 68.0% for lambda-cyhalothrin. The resistance ratio of the chlorpyrifos-resistant strain (Clo-rr) was 25.4-fold and of the lambda-cyhalothrin-resistant strain (Lam-rr) was 21.5-fold. We identified 1098 differentially expressed genes (DEGs) between Clo-rr and Sf-ss, and 303 DEGs between Lam-rr and Sf-ss. Functional analyses of the DEGs revealed the up-regulation of several detoxification enzymes, mainly cytochrome P450 belonging to CYP3 and CYP6 clans. Genes associated with regulatory processes, such as the forkhead box class O (FoxO) transcription factor were also up-regulated. Variant analysis of target-site mutations for both pesticides identified the A201S and F290V mutations in acetylcholinesterase-1, both occurring in heterozigosis in the Clo-rr S. frugiperda strain. CONCLUSION: Our data show that the overexpression of the enzymatic detoxification machinery is the main difference to explain the resistance of Clo-rr and Lam-rr strains of S. frugiperda to chlorpyrifos and lambda-cyhalothrin, although a target-site mutation also contributes to the Clo-rr resistance to chlorpyrifos. © 2023 Society of Chemical Industry.


Assuntos
Clorpirifos , Inseticidas , Piretrinas , Animais , Inseticidas/farmacologia , Clorpirifos/farmacologia , Spodoptera/genética , Acetilcolinesterase/genética , Resistência a Inseticidas/genética , Piretrinas/farmacologia , Expressão Gênica
15.
Annu Rev Entomol ; 68: 299-317, 2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36198399

RESUMO

The fall armyworm (FAW), Spodoptera frugiperda (Lepidoptera, Noctuidae), is a well-known agricultural pest in its native range, North and South America, and has become a major invasive pest around the globe in the past decade. In this review, we provide an overview to update what is known about S. frugiperda in its native geographic ranges. This is followed by discussion of studies from the invaded areas to gain insights into S. frugiperda's ecology, specifically its reproductive biology, host plant use, status of insecticide resistance alleles, and biocontrol methods in native and invasive regions. We show that reference to host strains is uninformative in the invasive populations because multidirectional introduction events likely underpinned its recent rapid spread. Given that recent genomic analyses show that FAW is much more diverse than was previously assumed, and natural selection forces likely differ geographically, region-specific approaches will be needed to control this global pest.


Assuntos
Agricultura , Espécies Introduzidas , Animais , Spodoptera/genética , América do Sul , Ecologia
16.
Mem. Inst. Oswaldo Cruz ; 118: e220159, 2023. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1448698

RESUMO

BACKGROUND Malaria is a public health concern in the Amazonian Region, where Anopheles darlingi is the main vector of Plasmodium spp. Several studies hypothesised the existence of cryptic species in An. darlingi, considering variations in behaviour, morphological and genetic aspects. Determining their overall genetic background for vector competence, insecticide resistance, and other elements is essential to better guide strategies for malaria control. OBJECTIVES This study aimed to evaluate the molecular diversity in genes related to behaviour and insecticide resistance, estimating genetic differentiation in An. darlingi populations from Amazonian localities in Brazil and Pacific Colombian region. METHODS We amplified, cloned and sequenced fragments of genes related to behaviour: timeless (tim) and period (per), and to insecticide resistance: voltage-gated sodium channel (Na V ) and acetylcholinesterase (ace-1) from 516 An. darlingi DNA samples from Manaus, Unini River, Jaú River and Porto Velho - Brazil, and Chocó - Colombia. We discriminated single nucleotide polymorphisms (SNPs), determined haplotypes and evaluate the phylogenetic relationship among the populations. FINDINGS The genes per, tim and ace-1 were more polymorphic than Na V . The classical kdr and ace-1 R mutations were not observed. Phylogenetic analyses suggested a significant differentiation between An. darlingi populations from Brazil and Colombia, except for the Na V gene. There was a geographic differentiation within Brazilian populations considering per and ace-1. CONCLUSIONS Our results add genetic data to the discussion about polymorphisms at population levels in An. darlingi. The search for insecticide resistance-related mechanisms should be extended to more populations, especially from localities with a vector control failure scenario.

17.
J Econ Entomol ; 115(6): 2041-2050, 2022 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-36255734

RESUMO

Fitness costs associated with insect resistance to insecticides can be exploited to implement resistance management programs. However, most of these studies are restricted to evaluating biological traits on artificial diets. Here, we investigated the fitness cost associated with chlorantraniliprole in Spodoptera frugiperda (J.E. Smith) feeding on corn, soybean, and cotton plants. We used a near-isogenic strain of S. frugiperda resistant to chlorantraniliprole (Iso-RR), a susceptible strain (SS), and heterozygotes strains (H1 and H2) to evaluate several biological and population growth parameters. Larval survival of the Iso-RR strain was on average 90% on corn, 65% on soybean, and 57% on cotton plants. Development time of the larval stage also differed among host plants, Iso-RR strain took on average 14, 17, and 26 days to reach the pupal stage on corn, soybean, and cotton plants respectively. Net reproductive rate, intrinsic rate of population increase, and finite rate of population increase were higher for Iso-RR strain feeding on corn plants than other host plants. The relative fitness, based on the intrinsic rate of population increase, of S. frugiperda resistant strain on corn, soybean, and cotton plants were 1.04, 0.85, and 0.88, respectively. Therefore, no fitness cost was observed for S. frugiperda feeding on corn plants, but a significant fitness cost was observed when this pest fed on soybean and cotton plants. We showed that the food source influences the fitness cost of S. frugiperda resistant to diamide. Such information may help to implement resistance management strategies based on each crop.


Assuntos
Inseticidas , Mariposas , Animais , Spodoptera , Diamida , Inseticidas/farmacologia , Resistência a Inseticidas , Larva , Zea mays/genética , Glycine max
18.
Viruses ; 14(10)2022 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-36298753

RESUMO

Zika virus (ZIKV) infection has caused devastating consequences in Brazil as infections were associated with neurological complications in neonates. Aedes aegypti is the primary vector of ZIKV, and the evolution of insecticide resistance (IR) in this species can compromise control efforts. Although relative levels of phenotypic IR in mosquitoes can change considerably over time, its influence on vector competence for arboviruses is unclear. Pyriproxyfen (PPF)-resistant populations of Ae. aegypti were collected from five municipalities located in Northeast of Brazil, which demonstrated different resistance levels; low (Serrinha, Brumado), moderate (Juazeiro do Norte, Itabuna), and high (Quixadá). Experimental per os infection using ZIKV were performed with individuals from these populations and with an insecticide susceptible strain (Rockefeller) to determine their relative vector competence for ZIKV. Although all populations were competent to transmit ZIKV, mosquitoes derived from populations with moderate to high levels of IR exhibited similar or lower susceptibility to ZIKV infection than those from populations with low IR or the susceptible strain. These observations suggest an association between IR and arbovirus infection, which may be attributable to genetic hitchhiking. The use of PPF to control Brazilian Ae. aegypti may be associated with an indirect benefit of reduced susceptibility to infection, but no changes in disseminated infection and transmission of ZIKV among PPF-resistant phenotypes.


Assuntos
Aedes , Inseticidas , Infecção por Zika virus , Zika virus , Animais , Zika virus/genética , Brasil , Mosquitos Vetores , Inseticidas/farmacologia , Saliva
19.
Parasit Vectors ; 15(1): 254, 2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35818063

RESUMO

BACKGROUND: The development of resistance against insecticides in Aedes aegypti can lead to operational failures in control programs. Knowledge of the spatial and temporal trends of this resistance is needed to drive effective monitoring campaigns, which in turn provide data on which vector control decision-making should be based. METHODS: Third-stage larvae (L3) from the F1 and F2 generations of 39 Peruvian field populations of Ae. aegypti mosquitoes from established laboratory colonies were evaluated for resistance against the organophosphate insecticide temephos. The 39 populations were originally established from eggs collected in the field with ovitraps in eight departments of Peru during 2018 and 2019. Dose-response bioassays, at 11 concentrations of the insecticide, were performed following WHO recommendations. RESULTS: Of the 39 field populations of Ae. aegypti tested for resistance to temephos , 11 showed high levels of resistance (resistance ratio [RR] > 10), 16 showed moderate levels of resistance (defined as RR values between 5 and 10) and only 12 were susceptible (RR < 5). The results segregated the study populations into two geographic groups. Most of the populations in the first geographic group, the coastal region, were resistant to temephos, with three populations (AG, CR and LO) showing RR values > 20 (AG 21.5, CR 23.1, LO 39.4). The populations in the second geographic group, the Amazon jungle and the high jungle, showed moderate levels of resistance, with values ranging between 5.1 (JN) and 7.1 (PU). The exception in this geographic group was the population from PM, which showed a RR value of 28.8 to this insecticide. CONCLUSIONS: The results of this study demonstrate that Ae. aegypti populations in Peru present different resistance intensities to temephos, 3 years after temephos use was discontinued. Resistance to this larvicide should continue to be monitored because it is possible that resistance to temephos could decrease in the absence of routine selection pressures.


Assuntos
Aedes , Inseticidas , Aedes/fisiologia , Animais , Resistência a Inseticidas , Inseticidas/farmacologia , Larva , Mosquitos Vetores , Peru , Temefós/farmacologia
20.
J Am Mosq Control Assoc ; 38(3): 226-229, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35839258

RESUMO

Susceptibility to organophosphates was evaluated in 2 populations of Culex quinquefasciatus from the department of Atlantico, Colombia. Bioassays for temephos, malathion, and pirimiphos-methyl were performed with 3rd-stage larvae and adult females of Cx. quinquefasciatus from the municipalities of Soledad and Puerto Colombia, following the methods of the World Health Organization and Centers for Disease Control and Prevention, respectively. The median lethal concentration (LC50) and 90% lethal concentration (LC90) resistance ratios (RRLC50 and RRLC90) were determined for each insecticide in the field populations evaluated, using the Cartagena strain as the susceptible control. Relative to LC50 and LC90 of the Cartagena strain, the population from Puerto Colombia was moderately resistant to temephos (RRLC50 5.7-fold) and malathion (RRLC50 8.6-fold, RRLC90 9-fold) and susceptible to pirimiphos-methyl (RRLC50 and RRLC90 < 5-fold). The population from Soledad was susceptible to temephos and pirimiphos-methyl (RRLC50 and RRLC90 < 5-fold) and showed moderate resistance to malathion (RRLC50 7.5-fold). It is important to emphasize that routine monitoring of insecticide resistance in Cx. quinquefasciatus helps us detect resistance early and improve the effectiveness of control strategies.


Assuntos
Culex , Inseticidas , Animais , Colômbia , Feminino , Resistência a Inseticidas , Inseticidas/farmacologia , Larva , Malation , Organofosfatos , Temefós
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA