Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38472106

RESUMO

BACKGROUND: Adenosinergic system has been implicated in the pathophysiology of bipolar disorder and drugs that affect adenosine neurotransmission have shown some efficacy as add-on therapy in manic patients. OBJECTIVE: Thus, the aim of the present study was to screen adenosinergic drugs for antimanic-like effect in methylphenidate (MPH)-induced hyperlocomotion in mice. METHODS: Male and female Swiss mice received a single allopurinol (50 and 200 mg/kg, ip), dipyridamole (20 mg/kg, ip), or inosine (50 mg/kg, ip) administration before an acute MPH challenge (5 mg/kg, sc). In experiments with repeated treatment, male mice received a daily administration of allopurinol (25 and 50 mg/kg, ip), dipyridamole (20 mg/kg, ip), or inosine (50 mg/kg, ip) for 14 days. Finally, pretreatment with aminophylline (2 mg/kg, sc), an unspecific adenosine receptor antagonist, was used to evaluate a putative adenosinergic mediation. Locomotor activity was measured in the automated activity chamber for 20 min. RESULTS: Acute and repeated dipyridamole reduced the increase in locomotor activity induced by MPH, while allopurinol and inosine had no effect. Aminophylline blocked the effect of dipyridamole in MPH-induced hyperlocomotion. CONCLUSION: The present results suggest that dipyridamole may have an antimanic-like effect through adenosine receptors and reinforce the proposal that the adenosine system may be an interesting target for new antimanic drugs.

2.
Purinergic Signal ; 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38367178

RESUMO

Neuroplasticity refers to the nervous system's ability to adapt and reorganize its cell structures and neuronal networks in response to internal and external stimuli. In adults, this process involves neurogenesis, synaptogenesis, and synaptic and neurochemical plasticity. Several studies have reported the significant impact of the purinergic system on neuroplasticity modulation. And, there is considerable evidence supporting the role of purine nucleosides, such as adenosine, inosine, and guanosine, in this process. This review presents extensive research on how these nucleosides enhance the neuroplasticity of the adult central nervous system, particularly in response to damage. The mechanisms through which these nucleosides exert their effects involve complex interactions with various receptors and signaling pathways. Adenosine's influence on neurogenesis involves interactions with adenosine receptors, specifically A1R and A2AR. A1R activation appears to inhibit neuronal differentiation and promote astrogliogenesis, while A2AR activation supports neurogenesis, neuritogenesis, and synaptic plasticity. Inosine and guanosine positively impact cell proliferation, neurogenesis, and neuritogenesis. Inosine seems to modulate extracellular adenosine levels, and guanosine might act through interactions between purinergic and glutamatergic systems. Additionally, the review discusses the potential therapeutic implications of purinergic signaling in neurodegenerative and neuropsychiatric diseases, emphasizing the importance of these nucleosides in the neuroplasticity of brain function and recovery.

3.
Hypertension ; 80(5): 981-994, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36802842

RESUMO

BACKGROUND: The endogenous purine 8-aminoguanine induces diuresis/natriuresis/glucosuria by inhibiting PNPase (purine nucleoside phosphorylase); however, mechanistic details are unknown. METHODS: Here, we further explored in rats 8-aminoguanine's effects on renal excretory function by combining studies using intravenous 8-aminoguanine, intrarenal artery infusions of PNPase substrates (inosine and guanosine), renal microdialysis, mass spectrometry, selective adenosine receptor ligands, adenosine receptor knockout rats, laser doppler blood flow analysis, cultured renal microvascular smooth muscle cells, HEK293 cells expressing A2B receptors and homogeneous time resolved fluorescence assay for adenylyl cyclase activity. RESULTS: Intravenous 8-aminoguanine caused diuresis/natriuresis/glucosuria and increased renal microdialysate levels of inosine and guanosine. Intrarenal inosine, but not guanosine, exerted diuretic/natriuretic/glucosuric effects. In 8-aminoguanine-pretreated rats, intrarenal inosine did not induce additional diuresis/natriuresis/glucosuria. 8-Aminoguanine did not induce diuresis/natriuresis/glucosuria in A2B-receptor knockout rats, yet did so in A1- and A2A-receptor knockout rats. Inosine's effects on renal excretory function were abolished in A2B knockout rats. Intrarenal BAY 60-6583 (A2B agonist) induced diuresis/natriuresis/glucosuria and increased medullary blood flow. 8-Aminoguanine increased medullary blood flow, a response blocked by pharmacological inhibition of A2B, but not A2A, receptors. In HEK293 cells expressing A2B receptors, inosine activated adenylyl cyclase, and this was abolished by MRS 1754 (A2B antagonist). In renal microvascular smooth muscle cells, 8-aminoguanine and forodesine (PNPase inhibitor) increased inosine and 3',5'-cAMP; however, in cells from A2B knockout rats, 8-aminoguanine and forodesine did not augment 3',5'-cAMP yet increased inosine. CONCLUSIONS: 8-Aminoguanine induces diuresis/natriuresis/glucosuria by increasing renal interstitial levels of inosine which, via A2B receptor activation, increases renal excretory function, perhaps in part by increasing medullary blood flow.


Assuntos
Adenilil Ciclases , Diurese , Ratos , Humanos , Animais , Adenilil Ciclases/farmacologia , Células HEK293 , Diuréticos/farmacologia , Natriurese , Receptores Purinérgicos P1 , Inosina/farmacologia
4.
J Food Biochem ; 46(12): e14429, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36153825

RESUMO

The goal of this study was to evaluate how glucose and fructose affected the adipose differentiation of pig newborn mesenchymal stem cells (MSCs). Cells were grown with or without inosine in 7.5 mM glucose (substituted with 1.5 or 6 mM fructose). MSCs displayed adipose morphology after 70 days of differentiation. Fructose stimulated the highest levels of PPARγ and C/EBPß. Fructose at 6 mM, but not glucose at 7.5 mM or fructose at 1.5 mM, promotes differentiation of MSCs into adipocytes and increases 11-hydroxysteroid dehydrogenase (11ß-HSD1) and NADPH oxidase 4 (NOX4) mRNA in the absence of hepatic effects (as simulated by the inosine). Fructose and glucose increased xanthine oxide-reductase (XOR) catalytic activity almost 10-fold and elevated their products: intracellular reactive oxygen species (ROS) pool, extracellular H2 O2 pool by 4 orders of magnitude, and uric acid by a factor of 10. Therefore, in our experimental model, differentiation of MSCs into adipocytes occurs exclusively at the blood concentration of fructose detected after ingestion by people on a high fructose diet. PRACTICAL APPLICATIONS: The results of this study provide new evidence for fructose's adipogenic potential in mesenchymal stem cells, a model in which its effects on XOR activity had not been studied. The increased expression of genes such as C/EBPß, PPARγ, and NOX4, as well as the increased XOR activity and high production of ROS during the differentiation process in the presence of fructose, coincides in pointing to this hexose as an important factor in the development of adipogenesis in young animals, which could have a great impact on the development of future obesity.


Assuntos
Glucose , Células-Tronco Mesenquimais , Animais , Suínos , Frutose/farmacologia , Espécies Reativas de Oxigênio/metabolismo , PPAR gama/metabolismo , Diferenciação Celular , Obesidade
5.
J Mol Med (Berl) ; 100(4): 569-584, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35091759

RESUMO

For over a year, the coronavirus disease 2019 has been affecting the world population by causing severe tissue injuries and death in infected people. Adenosine triphosphate (ATP) and the nicotinamide adenine dinucleotide (NAD +) are two molecules that are released into the extracellular microenvironment after direct virus infection or cell death caused by hyper inflammation and coagulopathy. Also, these molecules are well known to participate in multiple pathways and have a pivotal role in the purinergic signaling pathway. Thus, using public datasets available on the Gene Expression Omnibus (GEO), we analyzed raw proteomics data acquired using mass spectrometry (the gold standard method) and raw genomics data from COVID-19 patient samples obtained by microarray. The data was analyzed using bioinformatics and statistical methods according to our objectives. Here, we compared the purinergic profile of the total leukocyte population and evaluated the levels of these soluble biomolecules in the blood, and their correlation with coagulation components in COVID-19 patients, in comparison to healthy people or non-COVID-19 patients. The blood metabolite analysis showed a stage-dependent inosine increase in COVID-19 patients, while the nucleotides ATP and ADP had positive correlations with fibrinogen and other coagulation proteins. Also, ATP, ADP, inosine, and hypoxanthine had positive and negative correlations with clinical features. Regarding leukocyte gene expression, COVID-19 patients showed an upregulation of the P2RX1, P2RX4, P2RX5, P2RX7, P2RY1, P2RY12, PANX1, ADORA2B, NLPR3, and F3 genes. Yet, the ectoenzymes of the canonical and non-canonical adenosinergic pathway (ENTPD1 and CD38) are upregulated, suggesting that adenosine is produced by both active adenosinergic pathways. Hence, approaches targeting these biomolecules or their specific purinoreceptors and ectoenzymes may attenuate the high inflammatory state and the coagulopathy seen in COVID-19 patients. KEY MESSAGES : Adenosinergic pathways are modulated on leukocytes from COVID-19 patients. Plasmatic inosine levels are increased in COVID-19 patients. ATP, ADP, AMP, hypoxanthine, and inosine are correlated with coagulation players. The nucleotides and nucleosides are correlated with patients' clinical features. The P2 receptors and ectoenzymes are correlated with Tissue factor in COVID-19.


Assuntos
COVID-19 , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Conexinas , Humanos , Leucócitos/metabolismo , Proteínas do Tecido Nervoso , Transdução de Sinais
6.
Mol Neurobiol ; 59(2): 841-855, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34792730

RESUMO

Alzheimer's disease (AD) is a neurodegenerative pathology characterized by progressive impairment of memory, associated with neurochemical alterations and limited therapy. The aim of this study was to evaluate the effects of inosine on memory, neuroinflammatory cytokines, neurotrophic factors, expression of purinergic receptors, and morphological changes in the hippocampus and cerebral cortex of the rats with AD induced by streptozotocin (STZ). Male rats were divided into four groups: I, control; II, STZ; III, STZ plus inosine (50 mg/kg); and IV, STZ plus inosine (100 mg/kg). The animals received intracerebroventricular injections of STZ or buffer. Three days after the surgical procedure, animals were treated with inosine (50 mg/kg or 100 mg/kg) for 25 days. Inosine was able to prevent memory deficits and decreased the immunoreactivity of the brain A2A adenosine receptor induced by STZ. Inosine also increased the levels of brain anti-inflammatory cytokines (IL-4 and IL-10) and the expression of brain-derived neurotrophic factor and its receptor. Changes induced by STZ in the molecular layer of the hippocampus were attenuated by treatment with inosine. Inosine also protected against the reduction of immunoreactivity for synaptophysin induced by STZ in CA3 hippocampus region. However, inosine did not prevent the increase in GFAP in animals exposed to STZ. In conclusion, our findings suggest that inosine has therapeutic potential for AD through the modulation of different brain mechanisms involved in neuroprotection.


Assuntos
Doença de Alzheimer , Inosina , Receptores Purinérgicos , Doença de Alzheimer/metabolismo , Animais , Encéfalo/metabolismo , Modelos Animais de Doenças , Hipocampo/metabolismo , Inosina/farmacologia , Inosina/uso terapêutico , Masculino , Aprendizagem em Labirinto , Transtornos da Memória/tratamento farmacológico , Doenças Neuroinflamatórias , Ratos , Ratos Wistar , Receptores Purinérgicos/metabolismo , Estreptozocina
7.
Biochem Pharmacol ; 192: 114713, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34331910

RESUMO

In the respiratory tract, intracellular 3',5'-cAMP mediates smooth muscle relaxation triggered by the ß2-adrenoceptor/Gs protein/adenylyl cyclase axis. More recently, we have shown that ß2-adrenoceptor agonists also increase extracellular 3',5'-cAMP levels in isolated rat trachea, which leads to contraction of airway smooth muscle. In many other tissues, extracellular 3',5'-cAMP is metabolized by ectoenzymes to extracellular adenosine, a catabolic pathway that has never been addressed in airways. In order to evaluate the possible extracellular degradation of 3',5'-cAMP into 5'-AMP and adenosine in the airways, isolated rat tracheas were incubated with exogenous 3',5'-cAMP and the amount of 5'-AMP, adenosine and inosine (adenosine metabolite) produced was evaluated using ultraperformance liquid chromatography-tandem mass spectrometry. Incubation of tracheal tissue with 3',5'-cAMP induced a time- and concentration-dependent increase in 5'-AMP, adenosine and inosine in the medium. Importantly, IBMX (non-selective phosphodiesterase (PDE) inhibitor) and DPSPX (selective ecto-PDE inhibitor) reduced the extracellular conversion of 3',5'-cAMP to 5'-AMP. In addition, incubation of 3',5'-cAMP in the presence of AMPCP (inhibitor of ecto-5'-nucleotidase) increased extracellular levels of 5'-AMP while drastically reducing extracellular levels of adenosine and inosine. These results indicate that airways express an extracellular enzymatic system (ecto-phosphodiesterase, ecto-5'-nucleotidase and adenosine deaminase) that sequentially converts 3',5'-cAMP into 5'-AMP, adenosine and inosine. The observation that extracellular 3',5'-cAMP is a source of interstitial adenosine supports the idea that the extrusion and extracellular metabolism of 3',5'-cAMP has a role in respiratory physiology and pathophysiology.


Assuntos
Adenosina/metabolismo , AMP Cíclico/metabolismo , Líquido Extracelular/metabolismo , Músculo Liso/metabolismo , Traqueia/metabolismo , Animais , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar
8.
Purinergic Signal ; 17(2): 303-312, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33860899

RESUMO

The role of peripheral adenosine receptors in pain is a controversial issue and seems to be quite different from the roles of spinal and central adenosine receptors. The present study is aimed at clarifying the role of these receptors in peripheral nociception. To clarify this, studies were done on Swiss mice with adenosine receptor agonists and antagonists. Nociceptive behavior was induced by subcutaneous injection of glutamate (10 µmol) into the ventral surface of the hind paw of mice. Statistical analyses were performed by one-way ANOVA followed by the Student-Newman-Keuls post hoc test. Results showed that intraplantar (i.pl.) administration of N6-cyclohexyl-adenosine (CHA), an adenosine A1 receptor agonist, at 1 or 10 µg/paw significantly reduced glutamate-induced nociception (p<0.01 and p<0.001 vs. vehicle, respectively, n=8-10). In contrast, i.pl. injection of hydrochloride hydrate (CGS21680, an adenosine A2A receptor agonist) (1 µg/paw) induced a significant increase in glutamate-induced nociception compared to the vehicle (p<0.05, n=8), while 4-(-2-[7-amino-2-{2-furyl}{1,2,4}triazolo{2,3-a} {1,3,5}triazin-5-yl-amino]ethyl)phenol (ZM241385, an adenosine A2A receptor antagonist) (20 µg/paw) caused a significant reduction (p<0.05, n=7-8). There were no significant effects on i.pl. administration of four additional adenosine receptor drugs-8-cyclopentyl-1,3-dipropylxanthine (DPCPX, an A1 antagonist, 1-10 µg/paw), N(6)-[2-(3,5-dimethoxyphenyl)-2-(2-methylphenyl)-ethyl]adenosine (DPMA, an A2B agonist, 1-100 µg/paw), alloxazine (an A2B antagonist, 0.1-3 µg/paw), and 2-hexyn-1-yl-N(6)-methyladenosine (HEMADO) (an A3 agonist, 1-100 µg/paw) (p>0.05 vs. vehicle for all tests). We also found that prior administration of DPCPX (3 µg/paw) significantly blocked the anti-nociceptive effect of CHA (1 µg/paw) (p<0.05, n=7-9). Similarly, ZM241385 (20 µg/paw) administered prior to CGS21680 (1 µg/paw) significantly blocked CGS21680-induced exacerbation of nociception (p<0.05, n=8). Finally, inosine (10 and 100 µg/paw), a novel endogenous adenosine A1 receptor agonist recently reported by our research group, was also able to reduce glutamate-induced nociception (p<0.001 vs. vehicle, n=7-8). Interestingly, as an A1 adenosine receptor agonist, the inosine effect was significantly blocked by the A1 antagonist DPCPX (3 µg/paw) (p<0.05, n=7-9) but not by the A2A antagonist ZM241385 (10 µg/paw, p>0.05). In summary, these results demonstrate for the first time that i.pl administration of inosine induces an anti-nociceptive effect, similar to that elicited by CHA and possibly mediated by peripheral adenosine A1 receptor activation. Moreover, our results suggest that peripheral adenosine A2A receptor activation presents a pro-nociceptive effect, exacerbating glutamate-induced nociception independent of inosine-induced anti-nociceptive effects.


Assuntos
Glutamatos , Nociceptividade/efeitos dos fármacos , Dor/induzido quimicamente , Dor/psicologia , Sistema Nervoso Periférico/efeitos dos fármacos , Receptores Purinérgicos P1/efeitos dos fármacos , Agonistas do Receptor A1 de Adenosina/farmacologia , Antagonistas do Receptor A1 de Adenosina/farmacologia , Agonistas do Receptor A2 de Adenosina/farmacologia , Antagonistas do Receptor A2 de Adenosina/farmacologia , Animais , Feminino , , Glutamatos/administração & dosagem , Injeções , Inosina/farmacologia , Masculino , Camundongos , Medição da Dor/efeitos dos fármacos , Receptor A2A de Adenosina/efeitos dos fármacos
9.
Eur J Pharmacol ; 882: 173289, 2020 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-32565337

RESUMO

Atherosclerosis is a multifactorial chronic disease, initiated by an endothelial dysfunction. Adenosine and its analogs can change a variety of inflammatory diseases and has shown important effects at different disease models. Inosine is a stable analogous of adenosine, but its effects in inflammatory diseases, like atherosclerosis, have not yet been studied. The aim of this study was to evaluate the pharmacological properties of inosine, administered sub chronically in a hypercholesterolemic model. Male Wistar rats were divided into four groups: control group (C) and control + inosine (C + INO) received standard chow, hypercholesterolemic diet group (HCD) and HCD + inosine (HCD + INO) were fed a hypercholesterolemic diet. At 31st experimentation day, the treatment with inosine was performed for C + INO and HCD + INO groups once daily in the last 15 days. We observed that the hypercholesterolemic diet promoted an increase in lipid levels and inflammatory cytokines production, while inosine treatment strongly decreased these effects. Additionally, HCD group presented a decrease in maximum relaxation acetylcholine induced and an increase in contractile response phenylephrine induced when compared to the control group, as well as it has presented an enhancement in collagen and ADP-induced platelet aggregation. On the other hand, inosine treatment promoted a decrease in contractile response to phenylephrine, evoked an improvement in endothelium-dependent vasorelaxant response and presented antiplatelet properties. Moreover, inosine activated eNOS and reduced p38 MAPK/NF-κB pathway in aortic tissues. Taken together, the present results indicate inosine as a potential drug for the treatment of cardiovascular disorders such as atherosclerosis.


Assuntos
Anti-Inflamatórios/uso terapêutico , Aterosclerose/tratamento farmacológico , Inosina/uso terapêutico , Inibidores da Agregação Plaquetária/uso terapêutico , Vasodilatadores/uso terapêutico , Animais , Anti-Inflamatórios/farmacologia , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/fisiologia , Aterosclerose/sangue , Aterosclerose/metabolismo , Plaquetas/efeitos dos fármacos , Plaquetas/fisiologia , Humanos , Inosina/farmacologia , Interleucina-6/sangue , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , NF-kappa B/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Ratos Wistar , Fator de Necrose Tumoral alfa/sangue , Vasodilatadores/farmacologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Brain Res ; 1733: 146721, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32045593

RESUMO

Bipolar Disorder is a disorder characterized by alternating episodes of depression, mania or hypomania, or even mixed episodes. The treatment consists on the use of mood stabilizers, which imply serious adverse effects. Therefore, it is necessary to identify new therapeutic targets to prevent or avoid new episodes. Evidence shows that individuals in manic episodes present a purinergic system dysfunction. In this scenario, inosine is a purine nucleoside known to act as an agonist of A1 and A2A adenosine receptors. Thus, we aimed to elucidate the preventive effect of inosine on locomotor activity, changes in purine levels, and adenosine receptors density in a ketamine-induced model of mania in rats. Inosine pretreatment (25 mg/kg, oral route) prevented the hyperlocomotion induced by ketamine (25 mg/kg, intraperitoneal route) in the open-field test; however, there was no difference in hippocampal density of A1 and A2A receptors, where ketamine, as well as inosine, were not able to promote changes in immunocontent of the adenosine receptors. Likewise, no effects of inosine pretreatments or ketamine treatment were observed for purine and metabolic residue levels evaluated. In this sense, we suggest further investigation of signaling pathways involving purinergic receptors, using pharmacological strategies to better elucidate the action mechanisms of inosine on bipolar disorder. Despite the limitations, inosine administration could be a promising candidate for bipolar disorder treatment, especially by attenuating maniac phase symptoms, once it was able to prevent the hyperlocomotion induced by ketamine in rats.


Assuntos
Hipercinese/induzido quimicamente , Hipercinese/prevenção & controle , Inosina/administração & dosagem , Ketamina/administração & dosagem , Locomoção/efeitos dos fármacos , Mania/induzido quimicamente , Animais , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Hipercinese/metabolismo , Masculino , Mania/metabolismo , Ratos Wistar , Receptor A1 de Adenosina/metabolismo , Receptor A2A de Adenosina/metabolismo
11.
Psychopharmacology (Berl) ; 237(3): 811-823, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31834453

RESUMO

RATIONALE: Inosine is a naturally occurring purine nucleoside formed by adenosine breakdown. This nucleoside is reported to exert potent effects on memory and learning, possibly through its antioxidant and anti-inflammatory actions. OBJECTIVE: The objective is to evaluate the effects of inosine on the behavioral and neurochemical parameters in a rat model of Alzheimer's disease (AD) induced by streptozotocin (STZ). METHODS: Adult male rats were divided into four groups: control (saline), STZ, STZ plus inosine (50 mg/kg), and STZ plus inosine (100 mg/kg). STZ (3 mg/kg) was administered by bilateral intracerebroventricular injection. The animals were treated intraperitoneally with inosine for 25 days. Memory, oxidative stress, ion pump activities, acetylcholinesterase (AChE), and choline acetyltransferase (ChAT) activities and expression were evaluated in the cerebral cortex and hippocampus. RESULTS: The memory impairment induced by STZ was prevented by inosine. An increase in the Na+, K+-ATPase, and Mg-ATPase activities and a decrease in the Ca2+-ATPase activity were induced by STZ in the hippocampus and cerebral cortex, and inosine could prevent these alterations in ion pump activities. Inosine also prevented the increase in AChE activity and the alterations in AChE and ChAT expression induced by STZ. STZ increased the reactive oxygen species, nitrite levels, and superoxide dismutase activity and decreased the catalase and glutathione peroxidase activities. Inosine treatment conferred protection from these oxidative alterations in the brain. CONCLUSIONS: Our findings demonstrate that inosine affects brain multiple targets suggesting that this molecule may have therapeutic potential against cognitive deficit and tissue damage in AD.


Assuntos
Doença de Alzheimer/tratamento farmacológico , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Inosina/administração & dosagem , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/metabolismo , Animais , Antioxidantes/administração & dosagem , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Relação Dose-Resposta a Droga , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Estreptozocina/toxicidade
12.
Neuroscience ; 423: 206-215, 2019 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-31682823

RESUMO

Trauma to the peripheral nervous system (PNS) results in loss of motor and sensory functions. After an injury, a complex series of events begins, allowing axonal regeneration and target reinnervation. However, this regenerative potential is limited by several factors such as age, distance from the lesion site to the target and severity of lesion. Many studies look for ways to overcome these limitations. Inosine, a purine nucleoside derived from adenosine, emerges as a potential treatment, due to its capacity to regulate axonal growth, neuroprotection and immunomodulation, contributing to motor recovery. However, no studies demonstrated their effects on PNS. C57/Black6 mice were submitted to sciatic nerve crush and received intraperitoneal injections of saline or inosine (70 mg/kg), one hour after injury and daily for one week. To evaluate axonal regeneration and functional recovery, electroneuromyography, Sciatic Function Index (SFI), rotarod and pinprick tests were performed. Our results showed that the inosine group presented a higher number of myelinated fibers and a large amount of fibers within the ideal G-ratio. In addition, the results of electroneuromyography showed greater amplitude of the compound muscle action potentials in the first and second weeks, suggesting anticipation of regeneration in the inosine group. We also observed in the inosine group, motor and sensory neurons survival, reduction in the number of macrophages and myelin ovoids in the sciatic nerves, and an early recovery of motor and sensory functions. Thus, we conclude that the use of inosine accelerates axonal regeneration promoting an early recovery of motor and sensory functions.


Assuntos
Inosina/farmacologia , Compressão Nervosa , Regeneração Nervosa/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/prevenção & controle , Nervo Isquiático/efeitos dos fármacos , Animais , Eletromiografia , Injeções Intraperitoneais , Inosina/administração & dosagem , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Regeneração Nervosa/fisiologia , Fármacos Neuroprotetores/farmacologia , Traumatismos dos Nervos Periféricos/patologia , Recuperação de Função Fisiológica/efeitos dos fármacos , Recuperação de Função Fisiológica/fisiologia , Teste de Desempenho do Rota-Rod , Nervo Isquiático/lesões
13.
Food Chem ; 258: 199-205, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-29655723

RESUMO

Inosine 5'-monophosphate in acidic form and its lithium, potassium, magnesium, calcium, strontium and barium were prepared from the sodium salt, characterized by elemental analysis and Fourier transform infrared spectroscopy and submitted to thermogravimetry (TG), differential thermal analysis (DTA), differential scanning calorimetry (DSC) and thermogravimetry coupled to infrared spectroscopy (TG-FTIR) of the volatile products evolved during heating. All the salts were hydrated containing from 4 to 7.5 H2O. After dehydration these salts decomposed releasing the nitrogenous base followed by the ribose group, and producing pyrophosphates as final residue. Evolved Gas Analysis (EGA) reveled the release of water, isocyanic acid and hydrocyanic acid during decomposition of the organic moiety. It was observed only water loss up to 200 °C. At temperatures above 200 °C, the nucleotides were unstable and decomposed, implying that foods containing those additives should be processed below this temperature. Finally, a general mechanism for the decomposition of the inosinates was proposed.


Assuntos
Inosina Monofosfato/química , Bário/química , Varredura Diferencial de Calorimetria , Lítio/química , Magnésio/química , Potássio/química , Sais/química , Espectroscopia de Infravermelho com Transformada de Fourier , Estrôncio/química , Temperatura , Termogravimetria , Água/química
14.
J Neural Transm (Vienna) ; 124(10): 1227-1237, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28695335

RESUMO

Glutamatergic system and mTOR signaling pathway have been proposed to be important targets for pharmacological treatment of major depressive disorder. Previous studies have shown that inosine, an endogenous purine, is able to exert a remarkable antidepressant-like effect in mice. Nevertheless, the role of glutamatergic system and mTOR in this effect was not previously determined. This study was designed to investigate the possible modulation of NMDA receptors (NMDAR), AMPA receptors (AMPAR) and mTOR complex 1 (mTORC1) signaling pathway in the inosine anti-immobility effect in the tail suspension test (TST) in mice. Pre-treatment of mice with NMDA (0.1 pmol/mouse, NMDAR agonist, i.c.v.) and D-serine (30 µg/mouse, NMDAR co-agonist, i.c.v.) prevented inosine (10 mg/kg, i.p.) anti-immobility effect in the TST. In addition, a synergistic antidepressant-like effect was observed when a sub-effective dose of inosine (0.1 mg/kg, i.p.) was combined with sub-effective doses of NMDAR antagonists MK-801 (0.001 mg/kg, p.o.) or ketamine (0.1 mg/kg, i.p.). Conversely, the antidepressant-like effect elicited by inosine was not altered by pre-treatment with AMPAR antagonist, DNQX (2.5 µg/mouse, i.c.v.). The mTORC1 inhibitor rapamycin (0.2 nmol/mouse, i.c.v.) prevented the inosine anti-immobility effect in the TST. Noteworthy, inosine treatment did not change the immunocontent of the synaptic proteins PSD95, GluA1 and synapsin I. Mice locomotor activity assessed by open-field test, was not altered by treatments. Taken together, this study shows a pivotal role of NMDAR inhibition and mTORC1 activation for inosine antidepressant-like effect and extends the knowledge concerning the molecular mechanism and potential of inosine for antidepressant strategies.


Assuntos
Antidepressivos/uso terapêutico , Depressão/tratamento farmacológico , Ácido Glutâmico/metabolismo , Inosina/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Análise de Variância , Animais , Depressão/diagnóstico , Modelos Animais de Doenças , Proteína 4 Homóloga a Disks-Large/metabolismo , Relação Dose-Resposta a Droga , Fármacos Atuantes sobre Aminoácidos Excitatórios/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Elevação dos Membros Posteriores/métodos , Masculino , Camundongos , Receptores de AMPA/metabolismo
15.
Purinergic Signal ; 13(2): 203-214, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27966087

RESUMO

Inosine is a purine nucleoside formed by the breakdown of adenosine that elicits an antidepressant-like effect in mice through activation of adenosine A1 and A2A receptors. However, the signaling pathways underlying this effect are largely unknown. To address this issue, the present study investigated the influence of extracellular-regulated protein kinase (ERK)1/2, Ca2+/calmoduline-dependent protein kinase (CaMKII), protein kinase A (PKA), phosphoinositide 3-kinase (PI3K)/Akt, and glycogen synthase kinase 3beta (GSK-3ß) modulation in the antiimmobility effect of inosine in the tail suspension test (TST) in mice. In addition, we attempted to verify if inosine treatment was capable of altering the immunocontent and phosphorylation of the transcription factor cyclic adenosine monophosphatate (cAMP) response-binding element protein (CREB) in mouse prefrontal cortex and hippocampus. Intracerebroventricular administration of U0126 (5 µg/mouse, MEK1/2 inhibitor), KN-62 (1 µg/mouse, CaMKII inhibitor), H-89 (1 µg/mouse, PKA inhibitor), and wortmannin (0.1 µg/mouse, PI3K inhibitor) prevented the antiimmobility effect of inosine (10 mg/kg, intraperitoneal (i.p.)) in the TST. Also, administration of a sub-effective dose of inosine (0.1 mg/kg, i.p.) in combination with a sub-effective dose of AR-A014418 (0.001 µg/mouse, GSK-3ß inhibitor) induced a synergic antidepressant-like effect. None of the treatments altered locomotor activity of mice. Moreover, 24 h after a single administration of inosine (10 mg/kg, i.p.), CREB phosphorylation was increased in the hippocampus. Our findings provided new evidence that the antidepressant-like effect of inosine in the TST involves the activation of PKA, PI3K/Akt, ERK1/2, and CaMKII and the inhibition of GSK-3ß. These results contribute to the comprehension of the mechanisms underlying the purinergic system modulation and indicate the intracellular signaling pathways involved in the antidepressant-like effect of inosine in a preclinical test of depression.


Assuntos
Inosina/farmacologia , Transdução de Sinais/efeitos dos fármacos , Animais , Antidepressivos/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Elevação dos Membros Posteriores , Masculino , Camundongos , Estresse Psicológico
16.
Mol Neurobiol ; 54(5): 3271-3285, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27130268

RESUMO

Multiple sclerosis (MS) is a T cell autoimmune, inflammatory, and demyelinating disease of the central nervous system (CNS). Currently available therapies have partially effective actions and numerous side reactions. Inosine, an endogenous purine nucleoside, has immunomodulatory, neuroprotective, and analgesic properties. Herein, we evaluated the effect of inosine on the development and progression of experimental autoimmune encephalomyelitis (EAE), an experimental model of MS. Inosine (1 or 10 mg/kg, i.p.) was administrated twice a day for 40 days. Immunological and inflammatory responses were evaluated by behavioral, histological, immunohistochemical, ELISA, RT-PCR, and Western blotting analysis. The administration of inosine exerted neuroprotective effects against EAE by diminishing clinical signs, including thermal and mechanical hyperalgesia, as well as weight loss typical of the disease. These beneficial effects of inosine seem to be associated with the blockade of inflammatory cell entry into the CNS, especially lymphocytes, thus delaying the demyelinating process and astrocytes activation. In particular, up-regulation of IL-17 levels in the secondary lymphoid tissues, a result of EAE, was prevented by inosine treatment in EAE mice. Additionally, inosine consistently prevented A2AR up-regulation in the spinal cord, likely, through an ERK1-independent pathway. Altogether, these results allow us to propose that this endogenous purine might be a putative novel and helpful tool for the prevention of autoimmune and neurodegenerative diseases, such as MS. Thus, inosine could have considerable implications for future therapies of MS, and this study may represent the starting point for further investigation into the role of inosine and adenosinergic receptors in neuroinflammation processes. Graphical Abstract Preventive treatment with inosine inhibits the development and progression of EAE in C57Bl/6 mice. Furthermore, neuroinflammation and demyelinating processes were blocked by inosine treatment. Additionally, inosine consistently inhibited IL-17 levels in peripheral lymphoid tissue, as well as IL-4 levels and A2AR up-regulation in the spinal cord, likely, through an ERK1-independent pathway. EAE: experimental autoimmune encephalomyelitis; MS: multiple sclerosis; A2AR: adenosine A2A receptor; IL-17: interleukin-17; IL-4: interleukin-4.


Assuntos
Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/prevenção & controle , Inosina/uso terapêutico , Receptor A2A de Adenosina/metabolismo , Animais , Ansiedade/complicações , Ansiedade/patologia , Encefalomielite Autoimune Experimental/enzimologia , Encefalomielite Autoimune Experimental/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Feminino , Gliose/metabolismo , Gliose/patologia , Hiperalgesia/complicações , Hiperalgesia/patologia , Imunização , Imunomodulação , Inflamação/complicações , Inflamação/patologia , Inosina/farmacologia , Interleucina-17/biossíntese , Tecido Linfoide/patologia , Camundongos Endogâmicos C57BL , Modelos Biológicos , Bainha de Mielina/metabolismo , Fosforilação/efeitos dos fármacos , Medula Espinal/patologia
17.
Eur J Pharmacol ; 772: 71-82, 2016 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-26712379

RESUMO

It is well known that adenine-based purines exert multiple effects on pain transmission. Recently, we have demonstrated that guanine-based purines may produce some antinociceptive effects against chemical and thermal pain in mice. The present study was designed to investigate the antinociceptive effects of intrathecal (i.t.) administration of inosine or guanine in mice. Additionally, investigation into the mechanisms of action of these purines, their general toxicity and measurements of CSF purine levels were performed. Animals received an i.t. injection of vehicle (30mN NaOH), inosine or guanine (up to 600nmol) and submitted to several pain models and behavioural paradigms. Guanine and inosine produced dose-dependent antinociceptive effects in the tail-flick, hot-plate, intraplantar (i.pl.) glutamate, i.pl. capsaicin and acetic acid pain models. Additionally, i.t. inosine inhibited the biting behaviour induced by spinal injection of capsaicin and i.t. guanine reduced the biting behaviour induced by spinal injection of glutamate or AMPA. Intrathecal administration of inosine (200nmol) induced an approximately 115-fold increase on CSF inosine levels. This study provides new evidence on the mechanism of action of extracellular guanine and inosine presenting antinociceptive effects following spinal administration. These effects seem to be related, at least partially, to the modulation of A1 adenosine receptors.


Assuntos
Analgésicos/administração & dosagem , Analgésicos/farmacologia , Guanina/administração & dosagem , Guanina/farmacologia , Injeções Espinhais , Inosina/administração & dosagem , Inosina/farmacologia , Analgésicos/efeitos adversos , Animais , Guanina/efeitos adversos , Inosina/efeitos adversos , Masculino , Camundongos , Nociceptividade/efeitos dos fármacos , Dor/fisiopatologia , Purinas/líquido cefalorraquidiano , Receptores Purinérgicos P1/metabolismo
18.
Front Physiol ; 6: 212, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26283971

RESUMO

Aquatic and semiaquatic mammals have the capacity of breath hold (apnea) diving. Northern elephant seals (Mirounga angustirostris) have the ability to perform deep and long duration dives; during a routine dive, adults can hold their breath for 25 min. Neotropical river otters (Lontra longicaudis annectens) can hold their breath for about 30 s. Such periods of apnea may result in reduced oxygen concentration (hypoxia) and reduced blood supply (ischemia) to tissues. Production of adenosine 5'-triphosphate (ATP) requires oxygen, and most mammalian species, like the domestic pig (Sus scrofa), are not adapted to tolerate hypoxia and ischemia, conditions that result in ATP degradation. The objective of this study was to explore the differences in purine synthesis and recycling in erythrocytes and plasma of three mammalian species adapted to different environments: aquatic (northern elephant seal) (n = 11), semiaquatic (neotropical river otter) (n = 4), and terrestrial (domestic pig) (n = 11). Enzymatic activity of hypoxanthine-guanine phosphoribosyltransferase (HGPRT) was determined by spectrophotometry, and activity of inosine 5'-monophosphate dehydrogenase (IMPDH) and the concentration of hypoxanthine (HX), inosine 5'-monophosphate (IMP), adenosine 5'-monophosphate (AMP), adenosine 5'-diphosphate (ADP), ATP, guanosine 5'-diphosphate (GDP), guanosine 5'-triphosphate (GTP), and xanthosine 5'-monophosphate (XMP) were determined by high-performance liquid chromatography (HPLC). The activities of HGPRT and IMPDH and the concentration of HX, IMP, AMP, ADP, ATP, GTP, and XMP in erythrocytes of domestic pigs were higher than in erythrocytes of northern elephant seals and river otters. These results suggest that under basal conditions (no diving, sleep apnea or exercise), aquatic, and semiaquatic mammals have less purine mobilization than their terrestrial counterparts.

19.
Pharmgenomics Pers Med ; 7: 339-47, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25382982

RESUMO

Hepatitis C virus (HCV) was identified for the first time more than 20 years ago. Since then, several studies have highlighted the complicated aspects of this viral infection in relation to its worldwide prevalence, its clinical presentation, and its therapeutic response. Recently, two landmark scientific breakthroughs have moved us closer to the successful eradication of chronic HCV infection. First, response rates in treatment-naïve patients and in prior non-responders to pegylated-interferon-α and ribavirin therapy are increasing as a direct consequence of the development of direct-acting antiviral drugs. Secondly, the discovery of single-nucleotide polymorphisms near the interleukin 28B gene significantly related to spontaneous and treatment-induced HCV clearance represents a milestone in the HCV therapeutic landscape. The implementation of this pharmacogenomics finding as a routine test for HCV-infected patients has enhanced our understanding of viral pathogenesis, has encouraged the design of ground-breaking antiviral treatment regimens, and has become useful for pretreatment decision making. Nowadays, interleukin 28B genotyping is considered to be a key diagnostic tool for the management of HCV-infected patients and will maintain its significance for new combination treatment schemes using direct-acting antiviral agents and even in interferon-free regimens. Such pharmacogenomics insights represent a challenge to clinicians, researchers, and health administrators to transform this information into knowledge with the aim of elaborating safer and more effective therapeutic strategies specifically designed for each patient. In conclusion, the individualization of treatment regimens for patients with hepatitis C, that may lead to a universal cure in future years, is becoming a reality due to recent developments in biomarker and genomic medicine. In light of these advances, we review the scientific evidence and clinical implications of recent findings related to host genetic factors in the management of HCV infection.

20.
Br J Pharmacol ; 169(8): 1810-23, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23731236

RESUMO

BACKGROUND AND PURPOSE: The role of inosine at the mammalian neuromuscular junction (NMJ) has not been clearly defined. Moreover, inosine was classically considered to be the inactive metabolite of adenosine. Hence, we investigated the effect of inosine on spontaneous and evoked ACh release, the mechanism underlying its modulatory action and the receptor type and signal transduction pathway involved. EXPERIMENTAL APPROACH: End-plate potentials (EPPs) and miniature end-plate potentials (MEPPs) were recorded from the mouse phrenic-nerve diaphragm preparations using conventional intracellular electrophysiological techniques. KEY RESULTS: Inosine (100 µM) reduced MEPP frequency and the amplitude and quantal content of EPPs; effects inhibited by the selective A3 receptor antagonist MRS-1191. Immunohistochemical assays confirmed the presence of A3 receptors at mammalian NMJ. The voltage-gated calcium channel (VGCC) blocker Cd(2+) , the removal of extracellular Ca(2+) and the L-type and P/Q-type VGCC antagonists, nitrendipine and ω-agatoxin IVA, respectively, all prevented inosine-induced inhibition. In the absence of endogenous adenosine, inosine decreased the hypertonic response. The effects of inosine on ACh release were prevented by the Gi/o protein inhibitor N-ethylmaleimide, PKC antagonist chelerytrine and calmodulin antagonist W-7, but not by PKA antagonists, H-89 and KT-5720, or the inhibitor of CaMKII KN-62. CONCLUSION AND IMPLICATIONS: Our results suggest that, at motor nerve terminals, inosine induces presynaptic inhibition of spontaneous and evoked ACh release by activating A3 receptors through a mechanism that involves L-type and P/Q-type VGCCs and the secretory machinery downstream of calcium influx. A3 receptors appear to be coupled to Gi/o protein. PKC and calmodulin may be involved in these effects of inosine.


Assuntos
Acetilcolina/metabolismo , Inosina/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Receptor A3 de Adenosina/efeitos dos fármacos , Animais , Bloqueadores dos Canais de Cálcio/farmacologia , Carbazóis/farmacologia , Diafragma/inervação , Di-Hidropiridinas/farmacologia , Etilmaleimida/farmacologia , Feminino , Masculino , Camundongos , Junção Neuromuscular/metabolismo , Nervo Frênico , Pirróis/farmacologia , Receptor A3 de Adenosina/metabolismo , Receptores Purinérgicos P1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA