Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Curr Zool ; 66(3): 275-283, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32440288

RESUMO

Despite the diversity and ecological importance of cestodes, there is a paucity of studies on their life stages (i.e., complete lists of intermediate, paratenic, and definitive hosts) and genetic variation. For example, in the Gulf of Mexico (GoM) 98 species of cestodes have been reported to date; however, data on their intraspecific genetic variation and population genetic studies are lacking. The trypanorhynch cestode, Oncomegas wageneri, is found (among other places) off the American Western Atlantic Coast, including the GoM, and has been reported as an adult from stingrays and from several teleost species in its larval form (as plerocerci). This study represents the first report of 2 previously unregistered definitive hosts for O. wageneri, namely the Atlantic sharpnose shark Rhizoprionodon terraenovae and the southern stingray Hypanus americanus. In this work, partial sequences of the 28S (region D1-D2) ribosomal DNA were analyzed to include O. wageneri within an eutetrarhynchoid phylogenetic framework. All O. wageneri individuals (which included plerocerci and adults) were recovered as monophyletic and Oncomegas celatus was identified as the sister species of O. wageneri. Furthermore, population genetic analyses of O. wageneri from the southern GoM were carried out using DNA sequences of the mitochondrial cytochrome c oxidase subunit 1 (COI) gene, which reflected high genetic variation and a lack of genetic structure among the 9 oceanographic sampling sites. Based on these results, O. wageneri is panmictic in the southern GoM. More extensive sampling along the species entire distribution is necessary to make more accurate inferences of population genetics of O. wageneri.

2.
Fish Shellfish Immunol ; 93: 832-840, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31425832

RESUMO

Stingrays skin secretions are largely studied due to the human envenoming medical relevance of the sting puncture that evolves to inflammatory events, including necrosis. Such toxic effects can be correlated to the biochemical composition of the sting mucus, according to the literature. Fish skin plays important biological roles, such as the control of the osmotic pressure gradient, protection against mechanical forces and microorganism infections. The mucus, on the other hand, is a rich and complex fluid, acting on swimming, nutrition and the innate immune system. The elasmobranch's epidermis is a tissue composed mainly by mucus secretory cells, and marine stingrays have already been described to present secretory glands spread throughout the body. Little is known about the biochemical composition of the stingray mucus, but recent studies have corroborated the importance of mucus in the envenomation process. Aiming to assess the mucus composition, a new non-invasive mucus collection method was developed that focused on peptides and proteins, and biological assays were performed to analyze the toxic and immune activities of the Hypanus americanus mucus. Pathophysiological characterization showed the presence of peptidases on the mucus, as well as the induction of edema and leukocyte recruitment in mice. The fractionated mucus improved phagocytosis on macrophages and showed antimicrobial activity against T. rubrumç. neoformans and C. albicans in vitro. The proteomic analyses showed the presence of immune-related proteins like actin, histones, hemoglobin, and ribosomal proteins. This protein pattern is similar to those reported for other fish mucus and stingray venoms. This is the first report depicting the Hypanus stingray mucus composition, highlighting its biochemical composition and importance for the stingray immune system and the possible role on the envenomation process.


Assuntos
Venenos de Peixe/química , Imunidade Inata , Técnicas Imunológicas/veterinária , Muco/química , Animais , Brasil , Feminino , Imunidade nas Mucosas , Técnicas Imunológicas/métodos , Muco/imunologia , Rajidae
3.
Fish Shellfish Immunol, v. 93, p. 832-840, oct. 2019
Artigo em Inglês | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2862

RESUMO

Stingrays skin secretions are largely studied due to the human envenoming medical relevance of the sting puncture that evolves to inflammatory events, including necrosis. Such toxic effects can be correlated to the biochemical composition of the sting mucus, according to the literature. Fish skin plays important biological roles, such as the control of the osmotic pressure gradient, protection against mechanical forces and microorganism infections. The mucus, on the other hand, is a rich and complex fluid, acting on swimming, nutrition and the innate immune system. The elasmobranch's epidermis is a tissue composed mainly by mucus secretory cells, and marine stingrays have already been described to present secretory glands spread throughout the body. Little is known about the biochemical composition of the stingray mucus, but recent studies have corroborated the importance of mucus in the envenomation process. Aiming to assess the mucus composition, a new non-invasive mucus collection method was developed that focused on peptides and proteins, and biological assays were performed to analyze the toxic and immune activities of the Hypanus americanus mucus. Pathophysiological characterization showed the presence of peptidases on the mucus, as well as the induction of edema and leukocyte recruitment in mice. The fractionated mucus improved phagocytosis on macrophages and showed antimicrobial activity against T. rubrumç. neoformans and C. albicans in vitro. The proteomic analyses showed the presence of immune-related proteins like actin, histones, hemoglobin, and ribosomal proteins. This protein pattern is similar to those reported for other fish mucus and stingray venoms. This is the first report depicting the Hypanus stingray mucus composition, highlighting its biochemical composition and importance for the stingray immune system and the possible role on the envenomation process.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA