Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Inorg Biochem ; 241: 112128, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36701986

RESUMO

Two novel Iron (II) complexes featuring tetrapodal bis(benzimidazole)amino thio- and selenoether ligands (LS and LSe) were synthesized, characterized, and tested as electrocatalysts for the hydrogen evolution reaction. The bromide complexes [Fe(LS,LSe)Br2] (1-2) are highly insoluble, but their DMSO solvates were characterized by single crystal X-ray diffraction, revealing an octahedral coordination environment that does not feature coordination of the chalcogen atoms. The corresponding triflate derivatives [Fe(LS,LSe)(MeCN)3]OTf2 (1c-2c) were employed for electrocatalytic proton reduction, with 1c exhibiting higher activity, thus suggesting that the thioether may participate as a more competent pendant ligand for proton transfer.


Assuntos
Ferro , Prótons , Ferro/química , Hidrogênio , Compostos Ferrosos/química , Cristalografia por Raios X , Ligantes
2.
Front Bioeng Biotechnol ; 9: 710035, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458243

RESUMO

In a global context where the development of more environmentally conscious technologies is an urgent need, the demand for enzymes for industrial processes is on the rise. Compared to conventional chemical catalysts, the implementation of biocatalysis presents important benefits including higher selectivity, increased sustainability, reduction in operating costs and low toxicity, which translate into cleaner production processes, lower environmental impact as well as increasing the safety of the operating staff. Most of the currently available commercial enzymes are of mesophilic origin, displaying optimal activity in narrow ranges of conditions, which limits their actual application under industrial settings. For this reason, enzymes from extremophilic microorganisms stand out for their specific characteristics, showing higher stability, activity and robustness than their mesophilic counterparts. Their unique structural adaptations allow them to resist denaturation at high temperatures and salinity, remain active at low temperatures, function at extremely acidic or alkaline pHs and high pressure, and participate in reactions in organic solvents and unconventional media. Because of the increased interest to replace chemical catalysts, the global enzymes market is continuously growing, with hydrolases being the most prominent type of enzymes, holding approximately two-third share, followed by oxidoreductases. The latter enzymes catalyze electron transfer reactions and are one of the most abundant classes of enzymes within cells. They hold a significant industrial potential, especially those from extremophiles, as their applications are multifold. In this article we aim to review the properties and potential applications of five different types of extremophilic oxidoreductases: laccases, hydrogenases, glutamate dehydrogenases (GDHs), catalases and superoxide dismutases (SODs). This selection is based on the extensive experience of our research group working with these particular enzymes, from the discovery up to the development of commercial products available for the research market.

3.
Bioresour Technol ; 283: 308-315, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30921584

RESUMO

Conversion of organic matter to biohydrogen possesses promising application potential. In this study, low-cost ferrihydrite nanorods were used to enhance hydrogen production by Clostridium pasteurianum. The maximum cumulative hydrogen production and the hydrogen yield were 1.03 mmol and 3.55 mol H2/mol glucose, respectively, which were 68.9% and 15.6% higher than those of the batch groups without ferrihydrite addition. Moreover, in comparison with magnetite and hematite nanoparticles, ferrihydrite presented the best stimulation for hydrogen evolution. The enhancement mechanisms were explored based on metabolic distribution, gene expression, enzymatic activity, and metabolite determination, such as Fe(II) concentration and pH value. The potential stimulation mechanisms are summarized as follows: ferrihydrite improves glucose conversion efficiency and promotes cell growth; ferrihydrite elevates the transcripts and activity of hydrogenase; and ferrihydrite reduction via its buffer function could ease acidification. This study demonstrates that ferrihydrite addition is an effective and green strategy to enhance fermentative hydrogen production.


Assuntos
Fermentação , Compostos Férricos/química , Hidrogênio/metabolismo , Nanotubos , Clostridium/metabolismo , Óxido Ferroso-Férrico/química , Concentração de Íons de Hidrogênio , Hidrogenase/metabolismo
4.
Electron. j. biotechnol ; Electron. j. biotechnol;30: 64-70, nov. 2017. ilus, graf, tab
Artigo em Inglês | LILACS | ID: biblio-1021461

RESUMO

Background: The development of a potential single culture that can co-produce hydrogen and ethanol is beneficial for industrial application. Strain improvement via molecular approach was proposed on hydrogen and ethanol co-producing bacterium, Escherichia coli SS1. Thus, the effect of additional copy of native hydrogenase gene hybC on hydrogen and ethanol co-production by E. coli SS1 was investigated. Results: Both E. coli SS1 and the recombinant hybC were subjected to fermentation using 10 g/L of glycerol at initial pH 7.5. Recombinant hybC had about 2-fold higher cell growth, 5.2-fold higher glycerol consumption rate and 3-fold higher ethanol productivity in comparison to wild-type SS1. Nevertheless, wild-type SS1 reported hydrogen yield of 0.57 mol/mol glycerol and ethanol yield of 0.88 mol/mol glycerol, which were 4- and 1.4-fold higher in comparison to recombinant hybC. Glucose fermentation was also conducted for comparison study. The performance of wild-type SS1 and recombinant hybC showed relatively similar results during glucose fermentation. Additional copy of hybC gene could manipulate the glycerol metabolic pathway of E. coli SS1 under slightly alkaline condition. Conclusions: HybC could improve glycerol consumption rate and ethanol productivity of E. coli despite lower hydrogen and ethanol yields. Higher glycerol consumption rate of recombinant hybC could be an advantage for bioconversion of glycerol into biofuels. This study could serve as a useful guidance for dissecting the role of hydrogenase in glycerol metabolism and future development of effective strain for biofuels production.


Assuntos
Etanol/metabolismo , Escherichia coli/metabolismo , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Recombinação Genética , Biodegradação Ambiental , Meios de Cultura , Escherichia coli/enzimologia , Alcalinização , Fermentação , Glucose/metabolismo , Glicerol/metabolismo , Hidrogenase/genética
5.
Electron. j. biotechnol ; Electron. j. biotechnol;26: 27-32, Mar. 2017. tab, ilus, graf
Artigo em Inglês | LILACS | ID: biblio-1009654

RESUMO

Background: An effective single culture with high glycerol consumption and hydrogen and ethanol coproduction yield is still in demand. A locally isolated glycerol-consuming Escherichia coli SS1 was found to produce lower hydrogen levels under optimized ethanol production conditions. Molecular approach was proposed to improve the hydrogen yield of E. coli SS1 while maintaining the ethanol yield, particularly in acidic conditions. Therefore, the effect of an additional copy of the native hydrogenase gene hycE and recombinant clostridial hydrogenase gene hydA on hydrogen production by E. coli SS1 at low pH was investigated. Results: Recombinant E. coli with an additional copy of hycE or clostridial hydA was used for fermentation using 10 g/L (108.7 mmol/L) of glycerol with an initial pH of 5.8. The recombinant E. coli with hycE and recombinant E. coli with hydA showed 41% and 20% higher hydrogen yield than wild-type SS1 (0.46 ± 0.01 mol/mol glycerol), respectively. The ethanol yield of recombinant E. coli with hycE (0.50 ± 0.02 mol/mol glycerol) was approximately 30% lower than that of wild-type SS1, whereas the ethanol yield of recombinant E. coli with hydA (0.68 ± 0.09 mol/mol glycerol) was comparable to that of wild-type SS1. Conclusions: Insertion of either hycE or hydA can improve the hydrogen yield with an initial pH of 5.8. The recombinant E. coli with hydA could retain ethanol yield despite high hydrogen production, suggesting that clostridial hydA has an advantage over the hycE gene in hydrogen and ethanol coproduction under acidic conditions. This study could serve as a useful guidance for the future development of an effective strain coproducing hydrogen and ethanol.


Assuntos
Etanol/metabolismo , Escherichia coli/metabolismo , Hidrogênio/metabolismo , Biotecnologia , Proteínas Recombinantes , Clostridium/genética , Clostridium/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Fermentação , Glicerol , Concentração de Íons de Hidrogênio , Hidrogenase/genética , Hidrogenase/metabolismo
6.
Res Microbiol ; 166(1): 9-19, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25446611

RESUMO

A fosmid metagenomic library was constructed with total community DNA obtained from a municipal wastewater treatment plant (MWWTP), with the aim of identifying new FeFe-hydrogenase genes encoding the enzymes most important for hydrogen metabolism. The dataset generated by pyrosequencing of a fosmid library was mined to identify environmental gene tags (EGTs) assigned to FeFe-hydrogenase. The majority of EGTs representing FeFe-hydrogenase genes were affiliated with the class Clostridia, suggesting that this group is the main hydrogen producer in the MWWTP analyzed. Based on assembled sequences, three FeFe-hydrogenase genes were predicted based on detection of the L2 motif (MPCxxKxxE) in the encoded gene product, confirming true FeFe-hydrogenase sequences. These sequences were used to design specific primers to detect fosmids encoding FeFe-hydrogenase genes predicted from the dataset. Three identified fosmids were completely sequenced. The cloned genomic fragments within these fosmids are closely related to members of the Spirochaetaceae, Bacteroidales and Firmicutes, and their FeFe-hydrogenase sequences are characterized by the structure type M3, which is common to clostridial enzymes. FeFe-hydrogenase sequences found in this study represent hitherto undetected sequences, indicating the high genetic diversity regarding these enzymes in MWWTP. Results suggest that MWWTP have to be considered as reservoirs for new FeFe-hydrogenase genes.


Assuntos
Archaea/genética , Bactérias/genética , Biblioteca Genômica , Hidrogenase/genética , Proteínas Ferro-Enxofre/genética , Metagenoma , Consórcios Microbianos/genética , Esgotos/microbiologia , Algoritmos , Archaea/classificação , Archaea/enzimologia , Bactérias/classificação , Bactérias/enzimologia , Sequência de Bases , Brasil , Clostridium/genética , DNA Arqueal/genética , DNA Bacteriano/genética , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Hidrogênio/metabolismo , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA