Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2408522, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39303204

RESUMO

The effective utilization of hydrogen storage materials (HSMs) is hindered by impurity gas poisoning, posing a significant challenge for large-scale applications. This study elucidates the poisoning mechanisms of various impurities gases (CO, CO2, O2, Ar, He, CH4, N2) on ZrCo, Pd, U and LaNi5. Impurities gases are categorized into active and inactive types based on their effecting behaviors and mechanisms on the hydrogenation of HSMs. During the hydrogenation process, active impurities chemically poison the hydrogenation reaction by limiting hydrogen absorption at interface, while inactive impurities physically hinder hydrogenation reaction by impeding hydrogen diffusion in hydrogen-impurity mixed gas. In situ Scanning Tunneling Microscope clarifies these behaviors, and a novel criterion based on hydrogen spontaneous dissociation energy is introduced to explain and predict impurity-substrate interaction characteristics. The novel findings of this work provide a comprehensive framework for designing long-lived HSMs with poisoning resistance, guiding the development of more resilient hydrogen storage systems.

2.
Materials (Basel) ; 17(18)2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39336303

RESUMO

The synergic effects of activated carbon and transition metals on the hydrogenation characteristics of commercial ZK60 magnesium alloy were investigated. Severe plastic deformation was performed using equal-channel angular pressing with an internal die angle of 120° and preheating at 300 °C. The ZK60 alloy samples were processed for 12 passes using route BA. The deformed ZK60 alloy powder was blended with activated carbon and different concentrations of transition metals (Ag, Pd, Co, Ti, V, Ti) using high-energy ball milling for 20 h at a speed of 1725 rpm. The amount of hydrogen absorbed and its kinetics were calculated using Sievert's apparatus at the higher number of cycles at a 300 °C ab/desorption temperature. The microstructure of the powder was analyzed using an X-ray diffractometer and scanning electron microscope. The results indicated that 5 wt% activated carbon presented the maximum hydrogen absorption capacity of 6.2 wt%. The optimal hydrogen absorption capacities were 7.1 wt%, 6.8 wt%, 6.7 wt%, 6.64 wt%, 6.65 wt%, and 7.06 wt% for 0.5 Ag, 0.3 Co, 0.1 Al, 0.5 Pd, 2 Ti, and 0.5 V, respectively. The hydrogen absorption capacities were reduced by 35.21%, 26.47%, 41.79%, 21.68%, 26.31%, and 26.34% after 100 cycles for 5C0.5Ag, 5C0.3Co, 5C0.1Al, 5C0.5Pd, 2Ti, and 5C0.5V, respectively. Hydrogen absorption kinetics were significantly improved so that more than 90% of hydrogen was absorbed within five minutes.

3.
J Colloid Interface Sci ; 678(Pt B): 343-352, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39250837

RESUMO

Magnesium hydride (MgH2) as an ideal hydrogen storage carrier whose hydrogen storage performance can be effectively improved by transition metal-based catalysts. To construct highly active catalysts, much attention has been paid to the regulation of transition metal components while less attention has been paid to non-transition metal components especially oxygen, leading certain limitations. Herein, further improved hydrogen storage performance of MgH2 can be obtained by adjusting oxygen vacancy content in molybdenum trioxide (MoO3) catalyst. Specifically, compared with pure MgH2 (1.1 wt%) and MgH2-10 wt% MoO3 (4.5 wt%), more hydrogen (5.9 wt%) can be released by MgH2-10 wt% MoO3-x (MoO3 with abundant oxygen vacancies) at 300.0 °C within 499.0 s. Besides, superb capacity retention (6.1 wt%, 99.0 %) after 50 isothermal hydrogen ab/desorption cycles can be obtained for MgH2-10 wt% MoO3-x. Through rigorous comparative experiments and theoretical calculations, the excellent catalytic activity of MoO3-x is demonstrated to come from the abundant oxygen vacancies and the active substances (polyvalent Mo and nano-sized MgO) it assists to form during ball milling process. This work verifies the feasibility for further improving the catalytic activity of transition metal-based catalysts by tuning non-transition metal elements and thus provides a new strategy in catalyzed MgH2 system.

4.
Sci Rep ; 14(1): 18115, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39103460

RESUMO

The mechanism of Y on H/H2 adsorption performance of Mg17Al12 were studied by the density functional theory. We obtained that for the Y-adsorbed systems, Y tended to occupy on the bridge site between adjacent Mg atoms. For the Y-substituted surfaces, Y atoms inclined to replace Mg atoms on the surfaces. We found that hydrogen (H/H2) absorption on the Mg17Al12(110) systems were improved by adding Y, the order of adsorption energy was as follows: clean Mg17Al12(110) > the Y-substituted surfaces > the Y-adsorbed surfaces. In addition, H2 molecules could dissociate on the Y-containing systems without barrier energy. Electronic properties showed that for H2 adsorption, the s states of atomic H mainly hybridized with the d states of Y. The formations of the Y-H bonds and the interactions between Y and H atoms could expound the mechanism for the promoted hydrogenation performance of the Y-containing surfaces.

5.
ChemistryOpen ; 13(1): e202300011, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37316892

RESUMO

The quadrupole coupling constant CQ and the asymmetry parameter η have been determined for two complex aluminium hydrides from 27 Al NMR spectra recorded for stationary samples by using the Solomon echo sequence. The thus obtained data for KAlH4 (CQ =(1.30±0.02) MHz, η=(0.64±0.02)) and NaAlH4 (CQ =(3.11±0.02) MHz, η<0.01) agree very well with data previously determined from MAS NMR spectra. The accuracy with which these parameters can be determined from static spectra turned out to be at least as good as via the MAS approach. The experimentally determined parameters (δiso , CQ and η) are compared with those obtained from DFT-GIPAW (density functional theory - gauge-including projected augmented wave) calculations. Except for the quadrupole coupling constant for KAlH4 , which is overestimated in the GIPAW calculations by about 30 %, the agreement is excellent. Advantages of the application of the Solomon echo sequence for the measurement of less stable materials or for in situ studies are discussed.

6.
Chem Asian J ; : e202300593, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37787825

RESUMO

The rapid advancement of refined nanostructures and nanotechnologies offers significant potential to boost research activities in hydrogen storage. Recent innovations in hydrogen storage have centered on nanostructured materials, highlighting their effectiveness in molecular hydrogen storage, chemical storage, and as nanoconfined hydride supports. Emphasizing the importance of exploring ultra-high-surface-area nanoporous materials and metals, we advocate for their mechanical stability, rigidity, and high hydride loading capacities to enhance hydrogen storage efficiency. Despite the evident benefits of nanostructured materials in hydrogen storage, we also address the existing challenges and future research directions in this domain. Recent progress in creating intricate nanostructures has had a notable positive impact on the field of hydrogen storage, particularly in the realm of storing molecular hydrogen, where these nanostructured materials are primarily utilized.

7.
J Colloid Interface Sci ; 652(Pt A): 979-988, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37639928

RESUMO

Although MXene catalysts etched from precursor MAX have greatly improved the hydrogen storage performance of magnesium hydride (MgH2), the use of dangerous and polluting etchers (such as hydrofluoric acid) and the direct removal of potentially catalytically active A-layer substances (such as Al) present certain limitations. Here, solid-solution MAX phase TiVAlC catalyst without etching treatment has been directly introduced into MgH2 system to improve the hydrogen storage performance. The optimal MgH2-10 wt% TiVAlC can release about 6.00 wt% hydrogen at 300 °C within 378 s and absorb about 4.82 wt% hydrogen at 175 °C within 900 s. After 50 isothermal hydrogen ab/desorption cycles, the excellent cyclic stability and capacity retention (6.4 wt%, 99.6%) can be found for MgH2-10 wt% TiVAlC. The superb catalytic activity of TiVAlC catalyst can be explained by abundant electron transfer at external interfaces with MgH2/Mg, which can be further enhanced by impurity phase Ti3AlC2 due to strong H affinity brought from abundant electron transfer at internal interfaces (Ti3AlC2/TiVAlC). The influence of impurity phase which is common in MAX phase on the overall activity of catalysts has been firstly studied here, providing a unique method for designing composite catalyst to improve hydrogen storage performance of MgH2.

8.
Adv Mater ; 35(38): e2303173, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37313794

RESUMO

Hydrogen storage has long been a priority on the renewable energy research agenda. Due to its high volumetric and gravimetric hydrogen density, MgH2 is a desirable candidate for solid-state hydrogen storage. However, its practical use is constrained by high thermal stability and sluggish kinetics. Here, PdNi bilayer metallenes are reported as catalysts for hydrogen storage of bulk-MgH2 near ambient temperature. Unprecedented 422 K beginning dehydrogenation temperature and up to 6.36 wt.% reliable hydrogen storage capacity are achieved. Fast hydrogen desorption is also provided by the system (5.49 wt.% in 1 h, 523 K). The in situ generated PdNi alloy clusters with suitable d-band centers are identified as the main active sites during the de/re-hydrogenation process by aberration-corrected transmission electron microscopy and theoretical simulations, while other active species including Pd/Ni pure phase clusters and Pd/Ni single atoms obtained via metallene ball milling, also enhance the reaction. These findings present fundamental insights into active species identification and rational design of highly efficient hydrogen storage materials.

9.
ACS Appl Mater Interfaces ; 15(25): 30372-30382, 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37318842

RESUMO

The practical applications of MgH2 as a high-density hydrogen carrier depend heavily on efficient and low-cost catalysts to accelerate the dehydriding/hydriding reactions at moderate temperatures. In the present work, this issue is addressed by synthesizing Nb-doped TiO2 solid-solution-type catalysts that dramatically improve the hydrogen sorption performances of MgH2. The catalyzed MgH2 can absorb 5 wt % of H2 even at room temperature for 20 s, release 6 wt % of H2 at 225 °C within 12 min, and the complete dehydrogenation can be achieved at 150 °C under a dynamic vacuum atmosphere. Density functional theory calculations reveal that Nb doping introduces Nb 4d orbitals with stronger interaction with H 1s into the density of states of TiO2. This considerably enhances both the adsorption and dissociation ability of the H2 molecule on the catalysts surface and the hydrogen diffusion across the specific Mg/Ti(Nb)O2 interface. The successful implementation of solid solution-type catalysts in MgH2 offers a demonstration and inspiration for the development of high-performance catalysts and solid-state hydrogen storage materials.

11.
Adv Mater ; 35(2): e2206946, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36308031

RESUMO

The lack of safe and efficient hydrogen storage is a major bottleneck for large-scale application of hydrogen energy. Reversible hydrogen storage of light-weight metal hydrides with high theoretical gravimetric and volumetric hydrogen density is one ideal solution but requires extremely high operating temperature with large energy input. Herein, taking MgH2 as an example, a concept is demonstrated to achieve solar-driven reversible hydrogen storage of metal hydrides via coupling the photothermal effect and catalytic role of Cu nanoparticles uniformly distributed on the surface of MXene nanosheets (Cu@MXene). The photothermal effect of Cu@MXene, coupled with the "heat isolator" role of MgH2 indued by its poor thermal conductivity, effectively elevates the temperature of MgH2 upon solar irradiation. The "hydrogen pump" effect of Ti and TiHx species that are in situ formed on the surface of MXene from the reduction of MgH2 , on the other hand, plays a catalytic role in effectively alleviating the kinetic barrier and hence decreasing the operating temperature required for reversible hydrogen adsorption and desorption of MgH2 . Based on the combination of photothermal and catalytic effect of Cu@MXene, a reversible hydrogen storage capacity of 5.9 wt% is achieved for MgH2 after 30 cycles using solar irradiation as the only energy source.

12.
Nanomaterials (Basel) ; 12(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35889692

RESUMO

Transition metal catalysts are particularly effective in improving the kinetics of the reversible hydrogen storage reaction for light metal hydrides. Herein, K2MoO4 microrods were prepared using a simple evaporative crystallization method, and it was confirmed that the kinetic properties of magnesium hydride could be adjusted by doping cubic K2MoO4 into MgH2. Its unique cubic structure forms new species in the process of hydrogen absorption and desorption, which shows excellent catalytic activity in the process of hydrogen storage in MgH2. The dissociation and adsorption time of hydrogen is related to the amount of K2MoO4. Generally speaking, the more K2MoO4, the faster the kinetic performance and the shorter the time used. According to the experimental results, the initial dehydrogenation temperature of MgH2 + 10 wt% K2MoO4 composite is 250 °C, which is about 110 °C lower than that of As-received MgH2. At 320 °C, almost all dehydrogenation was completed within 11 min. In the temperature rise hydrogen absorption test, the composite system can start to absorb hydrogen at about 70 °C. At 200 °C and 3 MPa hydrogen pressure, 5.5 wt% H2 can be absorbed within 20 min. In addition, the activation energy of hydrogen absorption and dehydrogenation of the composite system decreased by 14.8 kJ/mol and 26.54 kJ/mol, respectively, compared to pure MgH2. In the cycle-stability test of the composite system, the hydrogen storage capacity of MgH2 can still reach more than 92% after the end of the 10th cycle, and the hydrogen storage capacity only decreases by about 0.49 wt%. The synergistic effect among the new species MgO, MgMo2O7, and KH generated in situ during the reaction may help to enhance the absorption and dissociation of H2 on the Mg/MgH2 surface and improve the kinetics of MgH2 for absorption and dehydrogenation.

13.
Small ; 18(43): e2107013, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35253367

RESUMO

MgH2 is one of the most promising solid hydrogen storage materials due to its high capacity, excellent reversibility, and low cost. However, its operation temperature needs to be greatly reduced to realize its practical applications, especially in the highly desired fuel cell fields. This work synthesizes a 2D nanoflake-shape bimetallic Ti-Nb oxide of TiNb2 O7 , which has high surface area and shows superior catalytic effect for the hydrogen storage of MgH2 . Incorporated with the TiNb2 O7 nanoflakes as low as 3 wt%, MgH2 shows a low onset dehydrogenation temperature of 178 °C, which is lowered by 100 °C compared with the pristine one. A dehydrogenation capacity as high as 7.0 wt% H2 is achieved upon heating to 300 °C. The capacity retention is as high as 96% after 30 cycles. The mechanism of the improved hydrogen storage properties is analyzed by density functional theory (DFT) calculation and the microstructural evolution during dehydrogenation and hydrogenation. This work provides an MgH2 system with high available capacity and low operation temperature by a unique structural design of the catalyst. The high surface area feature of the TiNb2 O7 nanoflakes and the synthesis method hopefully can develop the application of TiNb2 O7 .

14.
Small ; 18(17): e2107983, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35307952

RESUMO

The high dehydrogenation temperature of aluminum hydride (AlH3 ) has always been an obstacle to its application as a portable hydrogen source. To solve this problem, lithium nitride is introduced into the aluminum hydride system as a catalyst to optimize the dehydrogenation drastically, which reduces the initial dehydrogenation temperature from 140.0 to 66.8 °C, and provides a stable hydrogen capacity of 8.24, 6.18, and 5.75 wt.% at 100, 90, and 80 °C within 120 min by adjusting the mass fraction of lithium nitride. Approximately 8.0 wt.% hydrogen can be released within 15 min at 100 °C for the sample of 10 wt.% doping. Moderate dehydrogenation temperature slows down the inevitable self-dehydrogenation process during the ball-milling process, and the enhanced kinetics at lower temperature shows the possibility of application in the fuel cell.

15.
Micromachines (Basel) ; 12(10)2021 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-34683244

RESUMO

In our previous work, TaF5 and VCl3 were added to Mg, leading to the preparation of samples with good hydriding and dehydriding properties. In this work, Ni was added together with TaF5 and VCl3 to increase the reaction rates with hydrogen and the hydrogen-storage capacity of Mg. The addition of Ni together with TaF5 and VCl3 improved the hydriding and dehydriding properties of the TaF5 and VCl3-added Mg. MgH2 was also added with Ni, TaF5, and VCl3 and Mg-x wt% MgH2-1.25 wt% Ni-1.25 wt% TaF5-1.25 wt% VCl3 (x = 0, 1, 5, and 10) were prepared by reactive mechanical milling. The addition of MgH2 decreased the particle size, lowered the temperature at which hydrogen begins to release rapidly, and increased the hydriding and dehydriding rates for the first 5 min. Adding 1 and 5 wt% MgH2 increased the quantity of hydrogen absorbed for 60 min, Ha (60 min), and the quantity of hydrogen released for 60 min, Hd (60 min). The addition of MgH2 improved the hydriding-dehydriding cycling performance. Among the samples, the sample with x = 5 had the highest hydriding and dehydriding rates for the first 5 min and the best cycling performance, with an effective hydrogen-storage capacity of 6.65 wt%.

16.
Materials (Basel) ; 14(8)2021 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-33917208

RESUMO

The deterioration of hydrogen charging performances resulting from the surface chemical action of electrophilic gases such as CO2 is one of the prevailing drawbacks of TiMn1.52 materials. In this study, we report the effect of autocatalytic Pd deposition on the morphology, structure, and hydrogenation kinetics of TiMn1.52 alloy. Both the uncoated and Pd-coated materials were characterized using scanning electron microscopy/energy dispersive spectroscopy (SEM/EDS) and X-ray diffraction (XRD). XRD analyses indicated that TiMn1.52 alloy contains C14-type Laves phase without any second phase, while the SEM images, together with a particle size distribution histogram, showed a smooth non-porous surface with irregular-shaped particles ranging in size from 1 to 8 µm. The XRD pattern of Pd-coated alloy revealed that C14-type Laves phase was still maintained upon Pd deposition. This was further supported by calculated crystallite size of 29 nm for both materials. Furthermore, a Sieverts-type apparatus was used to study the kinetics of the alloys after pre-exposure to air and upon vacuum heating at 300 °C. The Pd-coated AB2 alloy exhibited good coating quality as confirmed by EDS with enhanced hydrogen absorption kinetics, even without activation. This is attributed to improved surface tolerance and a hydrogen spillover mechanism, facilitated by Pd nanoparticles. Vacuum heating at 300 °C resulted in removal of surface barriers and showed improved hydrogen absorption performances for both coated and uncoated alloys.

17.
Nanotechnology ; 32(28)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33765675

RESUMO

A novel process has been developed to synthesize MgH2nanoparticles by combining ball milling and thermal hydrogenolysis of di-n-butylmagnesium (C4H9)2Mg, denoted as MgBu2. With the aid of mechanical impact, the hydrogenolysis temperature of MgBu2in heptane and cyclohexane solution was considerably lowered down to 100 °C, and the MgH2nanoparticles with an average particle size ofca.8.9 nm were obtained without scaffolds. The nano-size effect of the MgH2nanoparticles causes a notable decrease in the onset dehydrogenation temperature of 225 °C and enthalpy of 69.78 kJ mol-1 · H2. This thermally-assisted milling and hydrogenolysis process may also be extended for synthesizing other nanomaterials.

18.
ACS Appl Mater Interfaces ; 12(42): 47684-47694, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33044811

RESUMO

For the first time, few-layer Ti3C2Tx (FL-Ti3C2Tx) supporting highly dispersed nano-Ni particles with an interconnected and interlaced structure was elaborated through a self-assembly reduction process. FL-Ti3C2Tx not only acts as a supporting material but also self-assembles with Ni2+ ions through the electrostatic interaction, assisting in the reduction of nano-Ni. After ball milling with MgH2, Ni30/FL-Ti3C2Tx (few-layer Ti3C2Tx supported 30 wt % nano-Ni via self-assembly reduction) shows superior catalytic activity for MgH2. For example, MgH2-5 wt % Ni30/FL-Ti3C2Tx can release approximately 5.83 wt % hydrogen within 1800 s at 250 °C and absorb 5 wt % hydrogen within 1700 s at 100 °C. The combined effects of finely dispersed nano-Ni in situ-grown on FL-Ti3C2Tx, large specific area of FL-Ti3C2Tx, multiple-valence Ti (Ti4+, Ti3+, Ti2+, and Ti0) derived from FL-Ti3C2Tx, and the electronic interaction between Ni and FL-Ti3C2Tx can explain the superb hydrogen storage performance. Our results will attract more attention to the elaboration of the metal/FL-Ti3C2Tx composite via self-assembly reduction and provide a guideline to design high-efficiency composite catalysts with MXene in hydrogen storage fields.

19.
Small ; 16(32): e2001963, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32613757

RESUMO

Poor reversibility and high desorption temperature restricts the practical use of lithium borohydride (LiBH4 ) as an advanced hydrogen store. Herein, a LiBH4 composite confined in unique double-layered carbon nanobowls prepared by a facile melt infiltration process is demonstrated, thanks to powerful capillary effect under 100 bar of H2 pressure. The gradual formation of double-layered carbon nanobowls is witnessed by transmission electron microscopy (TEM) observation. Benefiting from the nanoconfinement effect and catalytic function of carbon, this composite releases hydrogen from 225 °C and peaks at 353 °C, with a hydrogen release amount up to 10.9 wt%. The peak temperature of dehydriding is lowered by 112 °C compared with bulk LiBH4 . More importantly, the composite readily desorbs and absorbs ≈8.5 wt% of H2 at 300 °C and 100 bar H2 , showing a significant reversibility of hydrogen storage. Such a high reversible capacity has not ever been observed under the identical conditions. The usable volumetric energy density reaches as high as 82.4 g L-1 with considerable dehydriding kinetics. The findings provide insights in the design and development of nanosized complex hydrides for on-board applications.

20.
Front Chem ; 8: 227, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32351931

RESUMO

Hydrogen has become a promising energy source due to its efficient and renewable properties. Although promising, hydrogen energy has not been in widespread use due to the lack of high-performance materials for hydrogen storage. Previous studies have shown that the addition of Al-based compounds to LiBH4 can create composites that have good properties for hydrogen storage. In this work, the dehydrogenation performances of different composite systems of 2LiBH4+ M (M = Al, LiAlH4, Li3AlH6) were investigated. The results show that, under a ball to powder ratio of 25:1 and a rotation speed of 300 rpm, the optimum ball milling time is 50 h for synthesizing Li3AlH6 from LiH and LiAlH4. The three studied systems destabilized LiBH4 at relatively low temperatures, and the 2LiBH4-Li3AlH6 composite demonstrated excellent behavior. Based on the differential scanning calorimetry results, pure LiBH4 released hydrogen at 469°C. The dehydrogenation temperature of LiBH4 is 416°C for 2LiBH4-Li3AlH6 versus 435°C for 2LiBH4-LiAlH4 and 445°C for 2LiBH4-Al. The 2LiBH4-Li3AlH6, 2LiBH4-LiAlH4, and 2LiBH4-Al samples released 9.1, 8, and 5.7 wt.% of H2, respectively. Additionally, the 2LiBH4-Li3AlH6 composite released the 9.1 wt.% H2 within 150 min. An increase in the kinetics was achieved. From the results, it was concluded that 2LiBH4-Li3AlH6 exhibits the best dehydrogenation performance. Therefore, the 2LiBH4-Li3AlH6 composite is considered a promising hydrogen storage material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA