Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 406: 130973, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879051

RESUMO

In Brazil the main feedstock used for ethanol production is sugarcane juice, resulting in large amounts of bagasse. Bagasse has high potential for cellulosic ethanol production, and consolidated bioprocessing (CBP) has potential for lowering costs. However, economic feasibility requires bioprocessing at high solids loadings, entailing engineering and biological challenges. This study aims to document and characterize carbohydrate solubilization and utilization by defined cocultures of Clostridium thermocellum and Thermoanaerobacterium thermosaccharolyticum at increasing loadings of sugarcane bagasse. Results show that fractional carbohydrate solubilization decreases as solids loading increases from 10 g/L to 80 g/L. Cocultures enhance solubilization and carbohydrate utilization compared to monocultures, irrespective of initial solids loading. Rinsing bagasse before fermentation slightly decreases solubilization. Experiments studying inhibitory effects using spent media and dilution of broth show that negative effects are temporary or reversible. These findings highlight the potential of converting sugarcane bagasse via CBP, pointing out performance limitations that must be addressed.


Assuntos
Celulose , Clostridium thermocellum , Saccharum , Solubilidade , Thermoanaerobacterium , Saccharum/química , Celulose/química , Celulose/metabolismo , Thermoanaerobacterium/metabolismo , Clostridium thermocellum/metabolismo , Fermentação , Técnicas de Cocultura , Etanol/metabolismo
2.
Bioresour Technol ; 312: 123589, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32498011

RESUMO

This paper compares a semi-batch operation and a conventional one of an alkaline oxidative pretreatment of wheat straw carried out in a stirred tank reactor. For the pretreatment, different concentrations of biomass (6% up to 12% w/v) and two different particle sizes (mesh #40-60 and #>60) were experimented. The performance of processes was evaluated through the analysis of lignocellulosic composition of the biomass, and the enzymatic hydrolysis of pretreated biomass using the Cellic® CTec2 enzyme complex by Novozymes®. The process time of semi-batch operation is significantly lower than the batch one and enables a higher load of biomass, showing a delignification yield between 55 and 60%. In the first 5 h of reaction time, the enzymatic hydrolysis experiments reached their maximum yields of 72 and 66% according to reducing sugars conversion when using the mesh #>60 mesh and #40-60, respectively.


Assuntos
Veículos Automotores , Triticum , Biomassa , Hidrólise , Estresse Oxidativo
3.
Artigo em Inglês | MEDLINE | ID: mdl-26442260

RESUMO

Utilization of lignocellulosic materials for the production of value-added chemicals or biofuels generally requires a pretreatment process to overcome the recalcitrance of the plant biomass for further enzymatic hydrolysis and fermentation stages. Two of the most employed pretreatment processes are the ones that used dilute acid (DA) and alkaline (AL) catalyst providing specific effects on the physicochemical structure of the biomass, such as high xylan and lignin removal for DA and AL, respectively. Another important effect that need to be studied is the use of a high solids pretreatment (≥15%) since offers many advantaged over lower solids loadings, including increased sugar and ethanol concentrations (in combination with a high solids saccharification), which will be reflected in lower capital costs; however, this data is currently limited. In this study, several variables, such as catalyst loading, retention time, and solids loading, were studied using response surface methodology (RSM) based on a factorial central composite design of DA and AL pretreatment on agave bagasse using a range of solids from 3 to 30% (w/w) to obtain optimal process conditions for each pretreatment. Subsequently enzymatic hydrolysis was performed using Novozymes Cellic CTec2 and HTec2 presented as total reducing sugar (TRS) yield. Pretreated biomass was characterized by wet-chemistry techniques and selected samples were analyzed by calorimetric techniques, and scanning electron/confocal fluorescent microscopy. RSM was also used to optimize the pretreatment conditions for maximum TRS yield. The optimum conditions were determined for AL pretreatment: 1.87% NaOH concentration, 50.3 min and 13.1% solids loading, whereas DA pretreatment: 2.1% acid concentration, 33.8 min and 8.5% solids loading.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA