Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biotechnol Adv ; 54: 107839, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34592347

RESUMO

Optogenetics involves the use of light to control cellular functions and has become increasingly popular in various areas of research, especially in the precise control of gene expression. While this technology is already well established in neurobiology and basic research, its use in bioprocess development is still emerging. Some optogenetic switches have been implemented in yeasts for different purposes, taking advantage of a wide repertoire of biological parts and relatively easy genetic manipulation. In this review, we cover the current strategies used for the construction of yeast strains to be used in optogenetically controlled protein or metabolite production, as well as the operational aspects to be considered for the scale-up of this type of process. Finally, we discuss the main applications of optogenetic switches in yeast systems and highlight the main advantages and challenges of bioprocess development considering future directions for this field.


Assuntos
Optogenética , Leveduras , Expressão Gênica , Proteínas/genética , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Leveduras/genética
2.
N Biotechnol ; 53: 57-64, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31299302

RESUMO

A glycoside hydrolase family 5 (GH5) subfamily 22 gene, designated T81Xyl5_22A, was identified in the genome of the aerobic thermophilic bacterium, Thermogemmatispora sp. T81 (locus A4R35_07040). The gene was cloned and heterologously expressed in Escherichia coli and the gene product characterized biochemically. The recombinant enzyme had an optimal catalytic activity at pH5.0 and 65 °C, and was active against beechwood xylan and rye arabinoxylan. It yielded only xylose molecules as products of beechwood xylan hydrolysis, indicating that it is a GH5 family ß-d-xylosidase. Using 4-nitrophenyl ß-d-xylopyranoside (pNPX) as a substrate, the KM, Vmax, kcat and kcat/KM kinetic parameters were determined as 0.25 ±â€¯0.03 mM, 889.47 ±â€¯28.54 U/mg, 39.20 s-1 and 156.8 mM-1 s-1, respectively. Small-angle X-ray scattering (SAXS) data enabled reconstruction of the enzyme's low-resolution molecular envelope and revealed that it formed dimers in solution. As far as we are aware, this is the first description of a thermostable bacterial GH5 family ß-d-xylosidase.


Assuntos
Chloroflexi/enzimologia , Temperatura , Xilosidases/metabolismo , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Xilosidases/química , Xilosidases/genética
3.
mBio ; 9(4)2018 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-30065085

RESUMO

Optogenetic switches permit accurate control of gene expression upon light stimulation. These synthetic switches have become a powerful tool for gene regulation, allowing modulation of customized phenotypes, overcoming the obstacles of chemical inducers, and replacing their use by an inexpensive resource: light. In this work, we implemented FUN-LOV, an optogenetic switch based on the photon-regulated interaction of WC-1 and VVD, two LOV (light-oxygen-voltage) blue-light photoreceptors from the fungus Neurospora crassa When tested in yeast, FUN-LOV yields light-controlled gene expression with exquisite temporal resolution and a broad dynamic range of over 1,300-fold, as measured by a luciferase reporter. We also tested the FUN-LOV switch for heterologous protein expression in Saccharomyces cerevisiae, where Western blot analysis confirmed strong induction upon light stimulation, surpassing by 2.5 times the levels achieved with a classic GAL4/galactose chemical-inducible system. Additionally, we utilized FUN-LOV to control the ability of yeast cells to flocculate. Light-controlled expression of the flocculin-encoding gene FLO1, by the FUN-LOV switch, yielded flocculation in light (FIL), whereas the light-controlled expression of the corepressor TUP1 provided flocculation in darkness (FID). Altogether, the results reveal the potential of the FUN-LOV optogenetic switch to control two biotechnologically relevant phenotypes such as heterologous protein expression and flocculation, paving the road for the engineering of new yeast strains for industrial applications. Importantly, FUN-LOV's ability to accurately manipulate gene expression, with a high temporal dynamic range, can be exploited in the analysis of diverse biological processes in various organisms.IMPORTANCE Optogenetic switches are molecular devices which allow the control of different cellular processes by light, such as gene expression, providing a versatile alternative to chemical inducers. Here, we report a novel optogenetic switch (FUN-LOV) based on the LOV domain interaction of two blue-light photoreceptors (WC-1 and VVD) from the fungus N. crassa In yeast cells, FUN-LOV allowed tight regulation of gene expression, with low background in darkness and a highly dynamic and potent control by light. We used FUN-LOV to optogenetically manipulate, in yeast, two biotechnologically relevant phenotypes, heterologous protein expression and flocculation, resulting in strains with potential industrial applications. Importantly, FUN-LOV can be implemented in diverse biological platforms to orthogonally control a multitude of cellular processes.


Assuntos
Adesão Celular , Regulação Fúngica da Expressão Gênica/efeitos da radiação , Optogenética/métodos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/fisiologia , Estimulação Luminosa , Saccharomyces cerevisiae/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA