Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 165
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Plant J ; 119(3): 1197-1209, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38864847

RESUMO

Plants continuously endure unpredictable environmental fluctuations that upset their physiology, with stressful conditions negatively impacting yield and survival. As a contemporary threat of rapid progression, global warming has become one of the most menacing ecological challenges. Thus, understanding how plants integrate and respond to elevated temperatures is crucial for ensuring future crop productivity and furthering our knowledge of historical environmental acclimation and adaptation. While the canonical heat-shock response and thermomorphogenesis have been extensively studied, evidence increasingly highlights the critical role of regulatory epigenetic mechanisms. Among these, the involvement under heat of heterochromatic suppression mediated by transcriptional gene silencing (TGS) remains the least understood. TGS refers to a multilayered metabolic machinery largely responsible for the epigenetic silencing of invasive parasitic nucleic acids and the maintenance of parental imprints. Its molecular effectors include DNA methylation, histone variants and their post-translational modifications, and chromatin packing and remodeling. This work focuses on both established and emerging insights into the contribution of TGS to the physiology of plants under stressful high temperatures. We summarized potential roles of constitutive and facultative heterochromatin as well as the most impactful regulatory genes, highlighting events where the loss of epigenetic suppression has not yet been associated with corresponding changes in epigenetic marks.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica de Plantas , Inativação Gênica , Resposta ao Choque Térmico/genética , Temperatura Alta , Metilação de DNA , Plantas/genética , Plantas/metabolismo , Heterocromatina/genética , Heterocromatina/metabolismo
2.
Genes (Basel) ; 15(2)2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38397247

RESUMO

Vanellus (Charadriidae; Charadriiformes) comprises around 20 species commonly referred to as lapwings. In this study, by integrating cytogenetic and genomic approaches, we assessed the satellite DNA (satDNA) composition of one typical species, Vanellus chilensis, with a highly conserved karyotype. We additionally underlined its role in the evolution, structure, and differentiation process of the present ZW sex chromosome system. Seven distinct satellite DNA families were identified within its genome, accumulating on the centromeres, microchromosomes, and the W chromosome. However, these identified satellite DNA families were not found in two other Charadriiformes members, namely Jacana jacana and Calidris canutus. The hybridization of microsatellite sequences revealed the presence of a few repetitive sequences in V. chilensis, with only two out of sixteen displaying positive hybridization signals. Overall, our results contribute to understanding the genomic organization and satDNA evolution in Charadriiform birds.


Assuntos
Charadriiformes , Animais , Charadriiformes/genética , DNA Satélite/genética , Aves/genética , Cromossomos Sexuais , Sequências Repetitivas de Ácido Nucleico
3.
Genome ; 67(5): 151-157, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38262004

RESUMO

Cytogenetics has allowed the investigation of chromosomal diversity and repetitive genomic content in wasps. In this study, we characterized the karyotype of the social wasp Mischocyttarus cassununga using conventional cytogenetics and chromosomal mapping of repetitive sequences. This study was undertaken to extend our understanding of the genomic organization of repetitive DNA in social wasps and is the first molecular cytogenetic insight into the genus Mischocyttarus. The karyotype of M. cassununga had a chromosome number of 2n = 64 for females and n = 32 for males. Constitutive heterochromatin exhibited three distribution patterns: centromeric and pericentromeric regions along the smaller arms and extending almost the entire chromosome. The major ribosomal DNA sites were located on chromosome pair in females and one chromosome in males. Positive signals for the microsatellite probes (GA)n and (GAG)n were observed in the euchromatic regions of all chromosomes. The microsatellites, (CGG)n, (TAT)n, (TTAGG)n, and (TCAGG)n were not observed in any region of the chromosomes. Our results contrast with those previously obtained for Polybia fastidiosuscula, which showed that the microsatellites (GAG)n, (CGG)n, (TAT)n, (TTAGG)n, and (TCAGG)n are located predominantly in constitutive heterochromatin. This suggests variations in the diversity and chromosomal organization of repetitive sequences in the genomes of social wasps.


Assuntos
Heterocromatina , Repetições de Microssatélites , Vespas , Animais , Vespas/genética , Feminino , Masculino , Heterocromatina/genética , Cromossomos de Insetos/genética , Mapeamento Cromossômico , Cariótipo , Hibridização in Situ Fluorescente , Análise Citogenética
4.
Insect Mol Biol ; 32(6): 725-737, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37615351

RESUMO

Satellite DNAs (satDNAs) are highly repeated tandem sequences primarily located in heterochromatin, although their occurrence in euchromatin has been reported. Here, our aim was to advance the understanding of satDNA and multiple sex chromosome evolution in heteropterans. We combined cytogenetic and genomic approaches to study, for the first time, the satDNA composition of the genome in an Oxycarenidae bug, Oxycarenus hyalinipennis. The species exhibits a male karyotype of 2n = 19 (14A + 2 m + X1 X2 Y), with a highly differentiated Y chromosome, as demonstrated by C-banding and comparative genomic hybridization, revealing an enrichment of repeats from the male genome. Additionally, comparative analysis between males and females revealed that the 26 identified satDNA families are significantly biased towards male genome, accumulating in discrete regions in the Y chromosome. Exceptionally, the OhyaSat04-125 family was found to be distributed virtually throughout the entire extension of the Y chromosome. This suggests an important role of satDNA in Y chromosome differentiation, in comparison of other repeats, which collectively shows similar abundance between sexes, about 50%. Furthermore, chromosomal mapping of all satDNA families revealed an unexpected high spread in euchromatic regions, covering the entire extension, irrespective of their abundance. Only discrete regions of heterochromatin on the Y chromosome and of the m-chromosomes (peculiar chromosomes commonly observed in heteropterans) were enriched with satDNAs. The putative causes of the intense enrichment of satDNAs in euchromatin are discussed, including the possible existence of burst cycles similar to transposable elements and as a result of holocentricity. These data challenge the classical notion that euchromatin is not enriched with satDNAs.


Assuntos
DNA Satélite , Hemípteros , Humanos , Feminino , Masculino , Animais , Eucromatina , Hemípteros/genética , Heterocromatina , Hibridização Genômica Comparativa , Hibridização in Situ Fluorescente , Cromossomos Sexuais , Evolução Molecular
5.
Cytogenet Genome Res ; 163(1-2): 52-58, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37544288

RESUMO

The stingless bees Tetragonisca angustula and Tetragonisca fiebrigi are widely distributed in Brazil, and both are commonly known as "jataí." Our goal was to investigate the possible origin of the B chromosomes in T. fiebrigi, a cytotaxonomic trait that differentiates T. fiebrigi from T. angustula. We analyzed diploid chromosome number (2n), B chromosome incidence, patterns of constitutive heterochromatin, and in situ localization of different repetitive DNA probes in T. angustula and T. fiebrigi. Both species displayed 2n = 34, with similar karyotype structures. One to three B chromosomes were observed in T. fiebrigi only. Constitutive heterochromatin was distributed on one arm of all chromosomes in both species, and T. fiebrigi B chromosomes were mainly heterochromatic with one euchromatic extremity. The (GA)15 and (CAA)10 microsatellite probes marked the euchromatic arms of all chromosomes in both species without marking the B chromosomes. The 18S ribosomal DNA (rDNA) probe marked 10 chromosomes in T. angustula and 6 A chromosomes in T. fiebrigi with an additional marking on 1B in individuals with 3B. The Tan-Bsp68I repetitive DNA probe marked the heterochromatic portion of all T. fiebrigi A and B chromosomes. This probe also marked the heterochromatic portion of all T. angustula chromosomes; therefore, both alternative hypotheses to the B chromosome origin are possible: (i) from the A chromosome complement of T. fiebrigi (intraspecific origin); or (ii) a by-product of genome reshuffling following the hybridization between T. fiebrigi and T. angustula (interspecific origin).


Assuntos
Cromossomos Humanos Par 10 , Heterocromatina , Humanos , Abelhas , Animais , Heterocromatina/genética , Brasil , Diploide , Fenótipo
6.
Genet Med ; 25(7): 100861, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37087635

RESUMO

PURPOSE: This study aimed to establish variants in CBX1, encoding heterochromatin protein 1ß (HP1ß), as a cause of a novel syndromic neurodevelopmental disorder. METHODS: Patients with CBX1 variants were identified, and clinician researchers were connected using GeneMatcher and physician referrals. Clinical histories were collected from each patient. To investigate the pathogenicity of identified variants, we performed in vitro cellular assays and neurobehavioral and cytological analyses of neuronal cells obtained from newly generated Cbx1 mutant mouse lines. RESULTS: In 3 unrelated individuals with developmental delay, hypotonia, and autistic features, we identified heterozygous de novo variants in CBX1. The identified variants were in the chromodomain, the functional domain of HP1ß, which mediates interactions with chromatin. Cbx1 chromodomain mutant mice displayed increased latency-to-peak response, suggesting the possibility of synaptic delay or myelination deficits. Cytological and chromatin immunoprecipitation experiments confirmed the reduction of mutant HP1ß binding to heterochromatin, whereas HP1ß interactome analysis demonstrated that the majority of HP1ß-interacting proteins remained unchanged between the wild-type and mutant HP1ß. CONCLUSION: These collective findings confirm the role of CBX1 in developmental disabilities through the disruption of HP1ß chromatin binding during neurocognitive development. Because HP1ß forms homodimers and heterodimers, mutant HP1ß likely sequesters wild-type HP1ß and other HP1 proteins, exerting dominant-negative effects.


Assuntos
Homólogo 5 da Proteína Cromobox , Heterocromatina , Animais , Camundongos , Cromatina/genética , Proteínas Cromossômicas não Histona/genética , Histonas/genética , Histonas/metabolismo
7.
Zebrafish ; 20(2): 77-85, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36930749

RESUMO

Gymnotiformes a monophyletic group of fish endemic to the Neotropics, represent an important component of the freshwater ichthyofauna that presents relevant taxonomic problems. Thus, in view of the morphological complexity involving Eigenmannia (Gymnotiformes) fish species, this study aimed to characterize Eigenmannia aff. desantanai of the upper Paraguay River basin through cytogenetic and molecular analyses, to help in the correct identification and delimitation of species. This study reports a multiple sex system of the type ZW1W2/ZZ, with 2n = 31 for females and 2n = 30 for males. A single pair of chromosomes carrying the nucleolar organizing regions (NORs) was detected. The heterochromatin was colocated in NOR sites and mainly located in the centromeric regions of chromosomes. Besides that, individual sequences COI from the specimens of E. aff. desantanai were obtained, totalizing three haplotypes. The distance p between the haplotypes in E. aff. desantanai, ranged from 0.2% to 7.1%. Species delimitation tests indicated the existence of two possible operational taxonomic units of E. aff. desantanai. Thus, this study reports a new multiple sex system in Gymnotiformes and these specimens previously identified as E. aff. desantanai may belong to two distinct species.


Assuntos
Gimnotiformes , Feminino , Masculino , Animais , Gimnotiformes/genética , Peixe-Zebra/genética , Cromossomos Sexuais , Citogenética , Análise Citogenética
8.
Genes (Basel) ; 14(2)2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36833345

RESUMO

Among Meliponini species, c-heterochromatin can occupy large portions of chromosomes. This characteristic could be useful for understanding evolutionary patterns of satellite DNAs (satDNAs), although few sequences have been characterized in these bees. In Trigona, phylogenetically represented by clades A and B, the c-heterochromatin is mostly located in one chromosome arm. Here we used different techniques, including restriction endonucleases and genome sequencing followed by chromosomal analysis, to identify satDNAs that may be contributing to the evolution of c-heterochromatin in Trigona. Our results revealed a highly abundant ThyaSat01-301 satDNA, corresponding to about 13.77% of the Trigona hyalinata genome. Another seven satDNAs were identified, one corresponding to 2.24%, and the other six corresponding to 0.545% of the genome. The satDNA ThyaSat01-301 was shown to be one of the main constituents of the c-heterochromatin of this species, as well as of other species belonging to clade B of Trigona. However, this satDNA was not observed on the chromosomes of species from clade A, demonstrating that the c-heterochromatin is evolving divergently between species of clade A and B, as a consequence of the evolution of repetitive DNA sequences. Finally, our data suggest the molecular diversification of the karyotypes, despite a conservated macrochromosomal structure on the genus.


Assuntos
DNA Satélite , Heterocromatina , Abelhas/genética , Animais , Evolução Molecular , Mapeamento Cromossômico , Sequência de Bases
9.
Genome ; 66(3): 62-67, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36645884

RESUMO

Cytogenetic studies have enabled the characterization of the chromosomal macrostructure and microstructure and have contributed to the understanding of the evolution of wasp karyotypes. However, studies on Eumeninae solitary wasps are scarce. In this study, we characterized the karyotype of Ancistrocerus flavomarginatus (Brèthes, 1906) and compared it with previous data from other Ancistrocerus (Wesmael, 1836) species to shed light on the chromosomal diversity of the genus. A chromosome number of 2n = 24 in females and n = 12 in males was observed. Comparing the A. flavomarginatus karyotype with that of another Ancistrocerus species showed variations in the morphology of some chromosomal pairs. The presence of two larger chromosome pairs, almost entirely heterochromatic, and the predominance of subtelocentric chromosomes with heterochromatic short arms in A. flavomarginatus support the occurrence of fissions in Ancistrocerus. A single site of ribosomal genes was observed in A. flavomarginatus, in addition to a size polymorphism of these rDNA clusters between the homologues of some analyzed females. This polymorphism may originate from duplications/deletions due to unequal crossing-over or amplification via transposable elements. The (GA)15 microsatellite is located exclusively in euchromatic regions. Our data show that different rearrangements seem to shape chromosomal evolution in Ancistrocerus species.


Assuntos
Vespas , Animais , Masculino , Feminino , Vespas/genética , Cariótipo , Cariotipagem
10.
J Fish Biol ; 102(2): 520-524, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36321966

RESUMO

Although Astyanax bimaculatus is the most representative species of the genus in the Amazon region, there are no cytogenetic studies of A. bimaculatus species in Amazon region. Thus, we aimed to analyse the chromosome complements of specimens from this area using classic and molecular cytogenetic approaches. The results revealed the existence of a distinct cytotype and this is the first report of the occurrence of a B microchromosome in the species. Overall, these data indicate that the karyotypic evolution of this species is complex, involving the occurrence of chromosomal rearrangements.


Assuntos
Characidae , Caraciformes , Animais , Caraciformes/genética , Cariótipo , Cariotipagem , Ploidias , Brasil
11.
Braz. j. biol ; 83: 1-7, 2023. tab, ilus
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1468938

RESUMO

The karyotype and constitutive heterochromatin pattern of the white stork Ciconia ciconia samples obtained from Manzala lake, Dimiaat, Egypt was described. Somatic cells of Ciconia ciconia samples have diploid number 2n= 68 chromosomes. Out of 68 chromosomes, 11 pairs including sex chromosomes were macrochromosomes and the remaining pairs were microchromosomes. Of the 11 macrochromosome pairs, no.1, 2, 4 and 5 were submetacentric and pairs no. 6, 7 and 8 were described as metacentric. In addition, the autosome pair no.3 was subtelocentric, while autosome pair no.9 was acrocentric. Also, the sex chromosome Z represents the fourth one in size and it was classified as submetacentric while, W chromosome appeared as medium size and was acrocentric. Furthermore, C-banding pattern (constitutive heterochromatin) revealed variation in their sizes and occurrence between macrochromosomes. Pairs no. 7 and 8 of autosomes exhibited unusual distribution of heterochromatin, where they appeared as entirely heterochromatic. This may be related to the origin of sex chromosomes Z and W. However, there is no sufficient evidence illustrate the appearance of entirely heterochromatic autosomes. Therefore, there is no available cytogenetic literature that describes the C-banding and karyotype of Ciconia Ciconia, so the results herein are important and may assist in cytogenetic study and evolutionary pattern of Ciconiiformes.


O cariótipo e o padrão constitutivo de heterocromatina das amostras de cegonha-branca Ciconia ciconia obtidas no lago Manzala, Dimiaat, Egito, foram descritos. As células somáticas de amostras de Ciconia ciconia possuem número diploide 2n = 68 cromossomos. Dos 68 cromossomos, 11 pares incluindo cromossomos sexuais eram macrocromossomos e os pares restantes eram microcromossomos. Dos 11 pares de macrocromossomos, os nos 1, 2, 4 e 5 eram submetacêntricos, e os pares nos 6, 7 e 8 foram descritos como metacêntricos. Além disso, o par de autossomos no 3 era subtelocêntrico, enquanto o par de autossomos no 9 era acrocêntrico. Além disso, o cromossomo sexual Z representa o quarto em tamanho e foi classificado como submetacêntrico, enquanto o cromossomo W apareceu como de tamanho médio e acrocêntrico. Além disso, o padrão de bandamento C (heterocromatina constitutiva) revelou variação em seus tamanhos e ocorrência entre macrocromossomos. Pares nºs 7 e 8 dos autossomos exibiram distribuição incomum de heterocromatina, onde apareceram como totalmente heterocromáticos. Isso pode estar relacionado à origem dos cromossomos sexuais Z e W. No entanto, não há evidências suficientes para ilustrar o aparecimento de autossomos totalmente heterocromáticos. Portanto, não há literatura citogenética disponível que descreva o bandamento C e o cariótipo de Ciconia ciconia, portanto os resultados aqui apresentados são importantes e podem auxiliar no estudo citogenético e no padrão evolutivo de Ciconiiformes.


Assuntos
Animais , Aves/genética , Cariotipagem/veterinária , Heterocromatina/isolamento & purificação
12.
Braz. j. biol ; 832023.
Artigo em Inglês | LILACS-Express | LILACS, VETINDEX | ID: biblio-1469154

RESUMO

Abstract The karyotype and constitutive heterochromatin pattern of the white stork Ciconia ciconia samples obtained from Manzala lake, Dimiaat, Egypt was described. Somatic cells of Ciconia ciconia samples have diploid number 2n= 68 chromosomes. Out of 68 chromosomes, 11 pairs including sex chromosomes were macrochromosomes and the remaining pairs were microchromosomes. Of the 11 macrochromosome pairs, no.1, 2, 4 and 5 were submetacentric and pairs no. 6, 7 and 8 were described as metacentric. In addition, the autosome pair no.3 was subtelocentric, while autosome pair no.9 was acrocentric. Also, the sex chromosome Z represents the fourth one in size and it was classified as submetacentric while, W chromosome appeared as medium size and was acrocentric. Furthermore, C-banding pattern (constitutive heterochromatin) revealed variation in their sizes and occurrence between macrochromosomes. Pairs no. 7 and 8 of autosomes exhibited unusual distribution of heterochromatin, where they appeared as entirely heterochromatic. This may be related to the origin of sex chromosomes Z and W. However, there is no sufficient evidence illustrate the appearance of entirely heterochromatic autosomes. Therefore, there is no available cytogenetic literature that describes the C-banding and karyotype of Ciconia Ciconia, so the results herein are important and may assist in cytogenetic study and evolutionary pattern of Ciconiiformes.


Resumo O cariótipo e o padrão constitutivo de heterocromatina das amostras de cegonha-branca Ciconia ciconia obtidas no lago Manzala, Dimiaat, Egito, foram descritos. As células somáticas de amostras de Ciconia ciconia possuem número diploide 2n = 68 cromossomos. Dos 68 cromossomos, 11 pares incluindo cromossomos sexuais eram macrocromossomos e os pares restantes eram microcromossomos. Dos 11 pares de macrocromossomos, os nos 1, 2, 4 e 5 eram submetacêntricos, e os pares nos 6, 7 e 8 foram descritos como metacêntricos. Além disso, o par de autossomos no 3 era subtelocêntrico, enquanto o par de autossomos no 9 era acrocêntrico. Além disso, o cromossomo sexual Z representa o quarto em tamanho e foi classificado como submetacêntrico, enquanto o cromossomo W apareceu como de tamanho médio e acrocêntrico. Além disso, o padrão de bandamento C (heterocromatina constitutiva) revelou variação em seus tamanhos e ocorrência entre macrocromossomos. Pares nos 7 e 8 dos autossomos exibiram distribuição incomum de heterocromatina, onde apareceram como totalmente heterocromáticos. Isso pode estar relacionado à origem dos cromossomos sexuais Z e W. No entanto, não há evidências suficientes para ilustrar o aparecimento de autossomos totalmente heterocromáticos. Portanto, não há literatura citogenética disponível que descreva o bandamento C e o cariótipo de Ciconia ciconia, portanto os resultados aqui apresentados são importantes e podem auxiliar no estudo citogenético e no padrão evolutivo de Ciconiiformes.

13.
Braz. J. Biol. ; 83: 1-7, 2023. tab, ilus
Artigo em Inglês | VETINDEX | ID: vti-765515

RESUMO

The karyotype and constitutive heterochromatin pattern of the white stork Ciconia ciconia samples obtained from Manzala lake, Dimiaat, Egypt was described. Somatic cells of Ciconia ciconia samples have diploid number 2n= 68 chromosomes. Out of 68 chromosomes, 11 pairs including sex chromosomes were macrochromosomes and the remaining pairs were microchromosomes. Of the 11 macrochromosome pairs, no.1, 2, 4 and 5 were submetacentric and pairs no. 6, 7 and 8 were described as metacentric. In addition, the autosome pair no.3 was subtelocentric, while autosome pair no.9 was acrocentric. Also, the sex chromosome Z represents the fourth one in size and it was classified as submetacentric while, W chromosome appeared as medium size and was acrocentric. Furthermore, C-banding pattern (constitutive heterochromatin) revealed variation in their sizes and occurrence between macrochromosomes. Pairs no. 7 and 8 of autosomes exhibited unusual distribution of heterochromatin, where they appeared as entirely heterochromatic. This may be related to the origin of sex chromosomes Z and W. However, there is no sufficient evidence illustrate the appearance of entirely heterochromatic autosomes. Therefore, there is no available cytogenetic literature that describes the C-banding and karyotype of Ciconia Ciconia, so the results herein are important and may assist in cytogenetic study and evolutionary pattern of Ciconiiformes.(AU)


O cariótipo e o padrão constitutivo de heterocromatina das amostras de cegonha-branca Ciconia ciconia obtidas no lago Manzala, Dimiaat, Egito, foram descritos. As células somáticas de amostras de Ciconia ciconia possuem número diploide 2n = 68 cromossomos. Dos 68 cromossomos, 11 pares incluindo cromossomos sexuais eram macrocromossomos e os pares restantes eram microcromossomos. Dos 11 pares de macrocromossomos, os nos 1, 2, 4 e 5 eram submetacêntricos, e os pares nos 6, 7 e 8 foram descritos como metacêntricos. Além disso, o par de autossomos no 3 era subtelocêntrico, enquanto o par de autossomos no 9 era acrocêntrico. Além disso, o cromossomo sexual Z representa o quarto em tamanho e foi classificado como submetacêntrico, enquanto o cromossomo W apareceu como de tamanho médio e acrocêntrico. Além disso, o padrão de bandamento C (heterocromatina constitutiva) revelou variação em seus tamanhos e ocorrência entre macrocromossomos. Pares nºs 7 e 8 dos autossomos exibiram distribuição incomum de heterocromatina, onde apareceram como totalmente heterocromáticos. Isso pode estar relacionado à origem dos cromossomos sexuais Z e W. No entanto, não há evidências suficientes para ilustrar o aparecimento de autossomos totalmente heterocromáticos. Portanto, não há literatura citogenética disponível que descreva o bandamento C e o cariótipo de Ciconia ciconia, portanto os resultados aqui apresentados são importantes e podem auxiliar no estudo citogenético e no padrão evolutivo de Ciconiiformes.(AU)


Assuntos
Animais , Aves/genética , Cariotipagem/veterinária , Heterocromatina/isolamento & purificação
14.
Braz. j. biol ; 83: e248814, 2023. tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1339390

RESUMO

Abstract The karyotype and constitutive heterochromatin pattern of the white stork Ciconia ciconia samples obtained from Manzala lake, Dimiaat, Egypt was described. Somatic cells of Ciconia ciconia samples have diploid number 2n= 68 chromosomes. Out of 68 chromosomes, 11 pairs including sex chromosomes were macrochromosomes and the remaining pairs were microchromosomes. Of the 11 macrochromosome pairs, no.1, 2, 4 and 5 were submetacentric and pairs no. 6, 7 and 8 were described as metacentric. In addition, the autosome pair no.3 was subtelocentric, while autosome pair no.9 was acrocentric. Also, the sex chromosome Z represents the fourth one in size and it was classified as submetacentric while, W chromosome appeared as medium size and was acrocentric. Furthermore, C-banding pattern (constitutive heterochromatin) revealed variation in their sizes and occurrence between macrochromosomes. Pairs no. 7 and 8 of autosomes exhibited unusual distribution of heterochromatin, where they appeared as entirely heterochromatic. This may be related to the origin of sex chromosomes Z and W. However, there is no sufficient evidence illustrate the appearance of entirely heterochromatic autosomes. Therefore, there is no available cytogenetic literature that describes the C-banding and karyotype of Ciconia Ciconia, so the results herein are important and may assist in cytogenetic study and evolutionary pattern of Ciconiiformes.


Resumo O cariótipo e o padrão constitutivo de heterocromatina das amostras de cegonha-branca Ciconia ciconia obtidas no lago Manzala, Dimiaat, Egito, foram descritos. As células somáticas de amostras de Ciconia ciconia possuem número diploide 2n = 68 cromossomos. Dos 68 cromossomos, 11 pares incluindo cromossomos sexuais eram macrocromossomos e os pares restantes eram microcromossomos. Dos 11 pares de macrocromossomos, os nos 1, 2, 4 e 5 eram submetacêntricos, e os pares nos 6, 7 e 8 foram descritos como metacêntricos. Além disso, o par de autossomos no 3 era subtelocêntrico, enquanto o par de autossomos no 9 era acrocêntrico. Além disso, o cromossomo sexual Z representa o quarto em tamanho e foi classificado como submetacêntrico, enquanto o cromossomo W apareceu como de tamanho médio e acrocêntrico. Além disso, o padrão de bandamento C (heterocromatina constitutiva) revelou variação em seus tamanhos e ocorrência entre macrocromossomos. Pares nos 7 e 8 dos autossomos exibiram distribuição incomum de heterocromatina, onde apareceram como totalmente heterocromáticos. Isso pode estar relacionado à origem dos cromossomos sexuais Z e W. No entanto, não há evidências suficientes para ilustrar o aparecimento de autossomos totalmente heterocromáticos. Portanto, não há literatura citogenética disponível que descreva o bandamento C e o cariótipo de Ciconia ciconia, portanto os resultados aqui apresentados são importantes e podem auxiliar no estudo citogenético e no padrão evolutivo de Ciconiiformes.


Assuntos
Animais , Cromossomos Sexuais/genética , Heterocromatina/genética , Aves , Cariótipo , Cariotipagem
15.
Zoolog Sci ; 39(5): 446-452, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36205365

RESUMO

Freshwater catfishes from the genus Hypostomus have been models for several cytogenetic studies, due to their intense variability in diploid number, chromosome morphology, and the distribution of repetitive DNAs. Taking into consideration the taxonomic complexity inherent to this group, the present study aims to describe the karyotypes of five species of Hypostomus collected in their type localities: Hypostomus albopunctatus (Regan, 1908), Hypostomus hermanni (Ihering, 1905), Hypostomus iheringii (Regan, 1908), and Hypostomus paulinus (Ihering, 1905) from the Piracicaba River (the Upper Paraná River Basin); and Hypostomus mutucae Knaack, 1999 from the Claro River (the Upper Paraguay River Basin). Our results evidenced a great inter-specific diploid-number variation: 2n = 72 (H. hermanni); 2n = 74 (H. albopunctatus); 2n = 76 (H. paulinus); 2n = 80 (H. iheringii); and 2n = 82 (H. mutucae), which reflects the important role of Robertsonian rearrangements in the karyotypic differentiation among these species. The distribution of heterochromatin also varied considerably among species, making it possible to distinguish each analyzed species, as well as to detect microstructural variations among populations of the same species. These data can support taxonomic revisions when further associated with molecular markers and morphological analyses to delimit, more consistently, the taxonomic status of these Hypostomus species, which have a complex taxonomic diagnosis history.


Assuntos
Peixes-Gato , Animais , Brasil , Peixes-Gato/anatomia & histologia , Heterocromatina , Cariotipagem , Rios
16.
BAG, J. basic appl. genet. (Online) ; 33(1): 43-49, Oct. 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1420284

RESUMO

ABSTRACT Cytogenetic evidence indicates that Zea, which comprises maize (Z. mays ssp. mays) and its wild relatives, is an allopolyploid genus. Our research group has carried out numerous cytogenetic studies on Zea species, mainly focused on native Argentinian and Bolivian maize landraces. We found a wide inter- and intraspecific genome size variation in the genus, with mean 2C-values ranging between 4.20 and 11.36 pg. For the maize landraces studied here, it varied between 4.20 and 6.75 pg. The objectives of this work are to analyze the causes of genome size variation and to discuss their adaptive value in Zea. This variation is mainly attributed to differences in the heterochromatin located in the knobs and to the amount of interspersed DNA from retrotransposons. Polymorphisms in presence or absence of B-chromosomes (Bs) and the population frequency of Bs are also a source of genome size variation, with doses ranging between one and eight in the landraces analyzed here. Correlation analysis revealed that the percentage of heterochromatin is positively correlated with genome size. In addition, populations cultivated at higher altitudes, which are known to be precocious, have smaller genome sizes than do those growing at lower altitudes. This information, together with the positive correlation observed between the length of the vegetative cycle and the percentage of heterochromatin, led us to propose that it has an adaptive role. On the other hand, the negative relationship found between Bs and heterochromatic knobs allowed us to propose the existence of an intragenomic conflict between these elements. We hypothesize that an optimal nucleotype may have resulted from such intranuclear conflict, where genome adjustments led to a suitable length of the vegetative cycle for maize landraces growing across altitudinal clines.


RESUMEN La evidencia citogenética indica que el género Zea, el maíz (Z. mays ssp. mays) y sus parientes silvestres, posee un origen alopoliploide. Nuestro grupo de investigación ha realizado numerosos estudios en especies de Zea, principalmente en maíces nativos de Argentina y Bolivia. En este género, hallamos una amplia variación inter e intraespecífica en el tamaño del genoma, con valores 2C medios que oscilan entre 4,20 y 11,36 pg. El valor 2C medio de los maíces nativos estudiados varió entre 4,20 y 6,75 pg. Los objetivos de este trabajo son analizar las causas de la variación del tamaño del genoma en Zea y discutir su valor adaptativo. Esta variación se atribuye principalmente a las diferencias en la heterocromatina de los knobs y en la cantidad de ADN intercalado de los retrotransposones. Otras fuentes de variación son los polimorfismos para presencia/ausencia de cromosomas B (Bs) y para la frecuencia poblacional de Bs en las razas analizadas, con dosis que oscilan entre uno y ocho Bs. El porcentaje de heterocromatina se correlaciona positivamente con el tamaño del genoma. Las poblaciones cultivadas en altitudes altas, que son precoces, tienen tamaños de genoma más pequeños que las que crecen en bajas altitudes. Esta información, junto con la correlación positiva observada entre la duración del ciclo vegetativo y el porcentaje de heterocromatina, nos llevó a proponer el rol adaptativo de la heterocromatina. Por otro lado, la relación negativa encontrada entre Bs y knobs heterocromáticos nos permitió proponer la existencia de un conflicto intragenómico entre estos elementos. Hipotetizamos que de este conflicto intranuclear habría resultado el nucleotipo óptimo, donde ajustes genómicos condujeron a una duración adecuada del ciclo vegetativo en las razas de maíz que crecen a lo largo de clines altitudinales.

17.
BAG, J. basic appl. genet. (Online) ; 33(1): 89-95, Oct. 2022. graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1420289

RESUMO

ABSTRACT Zephyranthes citrina is an ornamental American bulbous plant used as an ornamental garden crop for the aesthetic qualities of its yellow perigonium. The objective of this work was to characterize the species by classical chromosome staining and fluorochrome banding. A sporophytic chromosome number of 2n=8x=48 chromosomes was observed, being the karyotypic formula 20 m + 26 sm + 2 st. Satellites were detected in the short arm of metacentric chromosomes 8, 9, 11 and 12, which colocalized with constitutive heterochromatin CMA+/DAPI-/0 bands. The karyotype comprised chromosome pairs with terminal constitutive heterochromatin bands that included satellites and heteromorphic clusters indicating that it is an allooctoploid. These results will be used as a tool for monitoring genetic improvement, in interspecific crosses and its progenies and in biotechnological procedures by in vitro culture.


RESUMEN Zephyranhtes citrina es una planta bulbosa americana, ornamental, utilizada en jardines por las cualidades estéticas de su perigonio amarillo. El objetivo de este trabajo fue caracterizar citogenéticamente la especie con tinción clásica convencional y bandeo cromosómico. Se observó un número cromosómico esporofítico de 2n=8x=48, siendo la fórmula cariotípica 20 m + 26 sm + 2st. Se detectaron satélites en el brazo corto de los cromosomas metacéntricos 8, 9, 11 y 12, que co-localizaron con bandas de heterocromatina constitutiva CMA+/DAPI-. El cariotipo comprendió pares de cromosomas con bandas de heterocromatina constitutivas terminales que incluyeron satélites y grupos heteromórficos que indican que es un alooctoploide. Estos resultados serán usados como herramientas en el monitoreo del mejoramiento genético, en análisis de cruzamientos interespecíficos y progenies y en procedimientos biotecnológicos de cultivo in vitro.

18.
Mol Biol Rep ; 49(9): 8785-8799, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35809181

RESUMO

BACKGROUND: Cestrum species present large genomes (2 C = ~ 24 pg), a high occurrence of B chromosomes and great diversity in heterochromatin bands. Despite this diversity, karyotypes maintain the chromosome number 2n = 16 (except when they present B chromosomes), and a relative similarity in chromosome morphology and symmetry. To deepen our knowledge of the Cestrum genome composition, low-coverage sequencing data of C. strigilatum and C. elegans were compared, including cytogenomic analyses of seven species. METHODS AND RESULTS: Bioinformatics analyses showed retrotransposons comprising more than 70% of the repetitive fraction, followed by DNA transposons (~ 17%), but FISH assays using retrotransposon probes revealed inconspicuous and scattered signals. The four satellite DNA families here analyzed represented approximately 2.48% of the C. strigilatum dataset, and these sequences were used as probes in FISH assays. Hybridization signals were colocalized with all AT- and GC-rich sequences associated with heterochromatin, including AT-rich Cold-Sensitive Regions (CSRs). Although satellite probes hybridized in almost all tested species, a satDNA family named CsSat49 was highlighted because it predominates in centromeric regions. CONCLUSIONS: Data suggest that the satDNA fraction is conserved in the genus, although there is variation in the number of FISH signals between karyotypes. Except to the absence of FISH signals with probes CsSat1 and CsSat72 in two species, the other satellites occurred in species of different phylogenetic clades. Some satDNA sequences have been detected in the B chromosomes, indicating that they are rich in preexisting sequences in the chromosomes of the A complement. This comparative study provides an important advance in the knowledge on genome organization and heterochromatin composition in Cestrum, especially on the distribution of satellite fractions between species and their importance for the B chromosome composition.


Assuntos
Cestrum , Solanaceae , Animais , Caenorhabditis elegans/genética , Cestrum/genética , DNA Satélite/genética , Heterocromatina/genética , Filogenia , Retroelementos/genética , Solanaceae/genética
19.
Cytogenet Genome Res ; 162(1-2): 64-75, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35500552

RESUMO

Anadoras is a thorny catfish genus widespread through the Amazon and Paraguay river basins. It includes 2 nominal species, A. grypus and A. weddellii, plus Anadoras sp. "araguaia," an undescribed species only recognized morphologically. Since Anadoras occupies a basal position within the Astrodoradinae phylogeny, it is crucial to identify its cytogenetic features to comprehend the mechanisms involved in the chromosomal diversification of this subfamily. Therefore, we performed a comparative cytogenetic analysis including all species of Anadoras. Furthermore, we applied a species delimitation analysis based on 600 bp of the mitochondrial cytochrome oxidase subunit 1 (CO1) gene to investigate the taxonomic status of the species. Cytogenetic markers revealed a high degree of similarity among Anadoras weddellii and Anadoras sp. "araguaia," both have 2n = 56 chromosomes (24m + 10sm + 22st/a), single NOR sites on acrocentric pair 28, and 5S rDNA sites on submetacentric pair 15. A. grypus has the most divergent chromosomal characteristics because, even though it also has 2n = 56 chromosomes, it exhibits several differences in the chromosome formula, heterochromatin distribution, and number/position of the rDNA sites. In sum, we believe that the chromosome diversification of Anadoras is due to 4 mechanisms: centric fusion, pericentric/paracentric inversions, nonreciprocal translocations, and activity of transposable elements. Additionally, our phylogenetic tree revealed well-supported clades and, by barcode species delimitation analysis, confirmed the existence of 3 molecular operational taxonomic units, including the putative new species Anadoras sp. "araguaia."


Assuntos
Peixes-Gato , Animais , Peixes-Gato/genética , Inversão Cromossômica , DNA Ribossômico/genética , Evolução Molecular , Heterocromatina/genética , Cariótipo , Filogenia
20.
Front Plant Sci ; 13: 842260, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35432411

RESUMO

Karyotypes are characterized by traits such as chromosome number, which can change through whole-genome duplication and dysploidy. In the parasitic plant genus Cuscuta (Convolvulaceae), chromosome numbers vary more than 18-fold. In addition, species of this group show the highest diversity in terms of genome size among angiosperms, as well as a wide variation in the number and distribution of 5S and 35S ribosomal DNA (rDNA) sites. To understand its karyotypic evolution, ancestral character state reconstructions were performed for chromosome number, genome size, and position of 5S and 35S rDNA sites. Previous cytogenetic data were reviewed and complemented with original chromosome counts, genome size estimates, and rDNA distribution assessed via fluorescence in situ hybridization (FISH), for two, seven, and 10 species, respectively. Starting from an ancestral chromosome number of x = 15, duplications were inferred as the prevalent evolutionary process. However, in holocentric clade (subgenus Cuscuta), dysploidy was identified as the main evolutionary mechanism, typical of holocentric karyotypes. The ancestral genome size of Cuscuta was inferred as approximately 1C = 12 Gbp, with an average genome size of 1C = 2.8 Gbp. This indicates an expansion of the genome size relative to other Convolvulaceae, which may be linked to the parasitic lifestyle of Cuscuta. Finally, the position of rDNA sites varied mostly in species with multiple sites in the same karyotype. This feature may be related to the amplification of rDNA sites in association to other repeats present in the heterochromatin. The data suggest that different mechanisms acted in different subgenera, generating the exceptional diversity of karyotypes in Cuscuta.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA