Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 151
Filtrar
2.
Odontology ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797796

RESUMO

This research assessed the effects of pre-heating on the physical-mechanical-chemical properties of different resin composites. For this, resin composites were evaluated in 6 levels: Admira/ADM, Vitra/VIT, Filtek Supreme/FS, Filtek Supreme Flowable/FSF, Filtek One/FO, and Filtek Bulk Fill Flowable/FBF; temperature was evaluated in 4 levels using a composite heater: room temperature/22 ºC, 37 ºC, 54 ºC, and 68 ºC. Response variables were: degree of conversion/DC, flexural strength/FS and color stability/ΔE (immediately after light curing/LC, after 7 days of dark-dry-storage, and after 24 h and 3 days of artificial aging in water at 60 ºC). Data were subjected to 2-way ANOVA (DC and FR) and 3-way repeated measurements ANOVA (ΔE), all followed by Tukey's test (α = 5%). DC were similar (FBF, FS, and FSF) or increased (ADM, FO, and VIT) as the temperature increased. Results of FR were unchanged or increased for all composites except VIT and ADM. High-viscosity composites (VIT and FS) showed higher FR values than low-viscosity composite (FSF). For bulk-fill composites, FBF and FO showed similar results, but lower than high-viscosity composites. Results of color stability showed acceptable values up to 3 days aging except for ADM and FSF. ΔE was not influenced by pre-heating and, overall, ΔE: FS < VIT < FO < FSF < ADM < FBF. Only VIT and FS showed ΔE ≤ 3.3 (clinical threshold). Therefore, the effects of pre-heating depend on the material. The tested materials generally showed similar or enhanced properties after pre-heating (except ADM and VIT).

3.
Bioresour Technol ; 403: 130906, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38806134

RESUMO

This study examines the gasification kinetics of Brazilian municipal solid waste (MSW) and its components under air, CO2, and air/CO2 (70/30 vol%) atmospheres. The ignition indices of paper and plastic are 6 and 3 times that of food waste, which are 38.6 × 10-3 %/min3 and 19.6 × 10-3 %/min3, respectively, implying a faster separation of volatile compounds from the paper and plastic. The minimum Eα values of 132 kJ/mol and 140 kJ/mol have been obtained for paper waste under air and air/CO2, respectively. On CO2 condition, MSW has an average Ea value of 96 kJ/mol. Under an air/CO2 atmosphere, a high synergistic ΔW of -4.7 wt% has been identified between individual components. The presence of air and CO2 improves the oxidation and char gasification process, thus resulting in better combustion. Hence, the gasification of MSW under an air/CO2 atmosphere would improve the waste-to-energy plant's performance and minimize the CO2 emission.


Assuntos
Dióxido de Carbono , Resíduos Sólidos , Termogravimetria , Brasil , Cinética , Dióxido de Carbono/análise , Eliminação de Resíduos/métodos , Atmosfera/química , Gases , Cidades
4.
Sci Total Environ ; 929: 172477, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621544

RESUMO

To study thermal behaviour during spontaneous combustion of an open-pit coal mine, mixed slag (coal, oil shale, and coal gangue) was taken as the research object. Laser thermal conductivity analyser and differential scanning calorimetry were used to test thermophysical parameters and heat release characteristics of the minerals. The parameters can be employed to calculate the apparent activation energy using the Arrhenius equation and evaluate the thermal behaviour of open-pit mixed slag. The results indicate that thermophysical parameters have stage characteristics. Thermal diffusivity and thermal conductivity of minerals, especially mixed slag, have a strong correlation with temperature. Heat flow of minerals exhibits five characteristic stages, and heat flow of the samples is consistent with the change in heating rate. During the heating process, thermal diffusivity and heat flow of the mixed slag are between those of a single mineral. Except for the mixed slag at 15 and 20 °C/min, the initial exothermic temperature of the other samples is mainly concentrated at 50-80 °C. Thermal energy release of the sample is mainly concentrated in the accelerated exothermic stage and rapid exothermic stage. Thermal energy release of mixed slag in rapid exothermic stage is always greater than that in accelerated exothermic stage, and the proportion of thermal energy release in these two stages exceeds 98 %. The apparent activation energy during the accelerated exothermic stage is lower, making it easier to release heat, and rapid exothermic stage is relatively high, which can readily lead to heat accumulation. Thermal analysis reveals that the thermal behaviour of mixed slag is significantly different from that of a single mineral. Its unique exothermic characteristics can provide a more accurate theoretical basis for the prevention and control of environmental pollution caused by slag spontaneous combustion.

5.
Int J Biol Macromol ; 266(Pt 2): 131414, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38582481

RESUMO

This research investigated the impact of ohmic heating (OH) on the physicochemical properties and resistant starch formation in native corn starch. Electric field strengths (EFS) of 50, 75, and 100 V/cm were applied to native starch, at a starch-water ratio of 1:1 w/v. The conductivity of the medium is a crucial factor in ohmic heating. In this study, the conductivity values at 120 °C were measured at 1.5 mS/m. The study revealed two distinct outcomes resulting from the application of different EFS. Firstly, a thermal effect induced gelatinization, resulting in a reduction in the enthalpy of corn starch, an increase in the water absorption index (WAI) and the water solubility index (WSI), and a decrease in peak viscosity. Secondly, a non-thermal effect of OH was observed, leading to the electrolysis of certain starch compounds and water. This electrolysis process generated radicals (-OH) that interacted with starch components, augmenting the percentage of resistant starch. This increase was associated with elevated levels of carbonyl and carboxyl groups at 75 and 100 V/cm.


Assuntos
Eletricidade , Solubilidade , Amido , Água , Zea mays , Zea mays/química , Amido/química , Viscosidade , Água/química , Calefação , Fenômenos Químicos , Temperatura Alta , Condutividade Elétrica
6.
Foods ; 13(7)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38611331

RESUMO

In this study, the effect of different heating temperatures (80, 90, 100, and 121 °C) on the physicochemical and volatile flavor properties of fried mantles (Argentinian shortfin) was investigated. The squid mantles were soaked in a maltose syrup solution (20% w/v) for 10 s and fried in soybean oil for 10 s (160 °C), vacuum-packed, and processed at different temperatures for 10 min. Then, the squid mantles were subjected to colorimetric analysis, sensory evaluation, free amino acid analysis, and texture profile analysis. In addition, the volatile organic compounds (VOCs) in the squid mantles were analyzed. The results revealed that lower treating temperatures (80 and 90 °C) improved the chromatic and textural properties, along with organoleptic perception. Additionally, the content of amino acid in the squid mantles treated at 121 °C was significantly lower than that of the samples treated at other temperatures (p < 0.05). Headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) was used to detect 41 VOCs, including their monomers and dimers. Among these detected VOCs, the contents of alcohols, ketones, and pyrazines were positively correlated with temperature. However, the content of aldehydes in the squid mantles gradually decreased as the heating temperature increased (p < 0.05). The combined HS-GC-IMS and E-nose results revealed that the lower temperatures (80 and 90 °C) were more suitable for flavor development and practical processing. This study provides valuable information for properly controlling the heating process of squid products, as well as flavor and practical applications for the aquatic industry.

7.
Sci Total Environ ; 924: 171621, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38467252

RESUMO

A positive feedback loop where climate warming enhances eutrophication and its manifestations (e.g., cyanobacterial blooms) has been recently highlighted, but its consequences for biodiversity and ecosystem functioning are not fully understood. We conducted a highly replicated indoor experiment with a species-rich subtropical freshwater phytoplankton community. The experiment tested the effects of three constant temperature scenarios (17, 20, and 23 °C) under high-nutrient supply conditions on community composition and proxies of ecosystem functioning, namely resource use efficiency (RUE) and CO2 fluxes. After 32 days, warming reduced species richness and promoted different community trajectories leading to a dominance by green algae in the intermediate temperature and by cyanobacteria in the highest temperature treatments. Warming promoted primary production, with a 10-fold increase in the mean biomass of green algae and cyanobacteria. The maximum RUE occurred under the warmest treatment. All treatments showed net CO2 influx, but the magnitude of influx decreased with warming. We experimentally demonstrated direct effects of warming on phytoplankton species sorting, with negative effects on diversity and direct positive effects on cyanobacteria, which could lead to potential changes in ecosystem functioning. Our results suggest potential positive feedback between the phytoplankton blooms and warming, via lower net CO2 sequestration in cyanobacteria-dominated, warmer systems, and add empirical evidence to the need for decreasing the likelihood of cyanobacterial dominance.


Assuntos
Clorófitas , Cianobactérias , Fitoplâncton , Ecossistema , Dióxido de Carbono , Biomassa , Eutrofização , Lagos
8.
Odontology ; 112(3): 773-781, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38305943

RESUMO

This study analyzed and compared the physicochemical and mechanical properties of preheated resin composite with light-cured resin cement for luting indirect restorations. 210 specimens of resin cement/resin composite were prepared according to preheating treatment heated (Htd) or not (NHtd). Light-cured resin cement (Variolink Veneer, Ivoclar), and resin composite (Microhybrid-Z100, 3 M; Nanohybrid-Empress direct, Ivoclar; and Bulk fill-Filtek One, 3 M) were used (n = 10). Resin cement specimens were not preheated. The response variables were (n = 10): film thickness, microhardness, liquid sorption and solubility. Data were analyzed by 2-way ANOVA and Tukey HSD post-test (α = 0.05). Bulk fill NHtd resin had the highest film thickness values (p < 0.001). Microhybrid and nanohybrid Htd resins had the smallest thicknesses and did not differ from the cement (p > 0.05). The highest microhardness values were found for Bulk fill NHtd and Bulk fill Htd resins. The nanohybrid and microhybrid Htd resins showed the lowest microhardness values, with no difference in cement (p > 0.05). For liquid sorption, there was no significant difference between the groups (p = 0.1941). The microhybrid Htd resin showed higher solubility values than the other materials (p = 0.0023), but it did not differ statistically from resin cement (p > 0.05). Preheating composite resins reduced the film thickness. After heating, nanohybrid and Bulk fill resins retained stable microhardness, sorption, and solubility values.


Assuntos
Cerâmica , Resinas Compostas , Teste de Materiais , Solubilidade , Resinas Compostas/química , Cerâmica/química , Cimentos de Resina/química , Propriedades de Superfície , Dureza , Temperatura Alta , Fenômenos Químicos
9.
Mol Divers ; 28(1): 111-123, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36787083

RESUMO

Cyrene, a green bioderived solvent from waste cellulose, was applied to the synthesis of novel α-acyloxyamide derivatives through a Passerini-3CR with carboxylic acids and isocyanides with good yields and diastereoselectivities under mild conditions. Cyrene showed exceptionally high reactivity and the degree of diastereoselection was dependent mostly on the isocyanide. DFT calculations as well as the experimental findings indicated that both kinetic and thermodynamic effects might explain the results.


Assuntos
Ácidos Carboxílicos , Cianetos , Solventes
10.
Fisioter. Mov. (Online) ; 37: e37117, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1557766

RESUMO

Abstract Introduction Ultrasound used in diathermic therapies aims to achieve temperatures between 40 and 45 °C, since temperatures above 45 °C are known to cause tissue necrosis and burns. Many studies have been conducted to investigate the effect of therapeutic ultrasound in the presence of metallic implants, using phantoms (test samples) and in vivo and ex vivo animal models. In most of these studies, the ultrasound probe is fixed in one area, while in clinical practice, it is recommended that it be moved to avoid possible local overheating. Objective To analyze the thermal field at the muscle-bone interface in phantoms in the presence or absence of metallic implants after the application of therapeutic ultrasound. Methods Phantoms composed of layers simulating fat and muscle, and a layer of beef rib bone, with and without a titanium metallic implant, were prepared. The experiment involved different intensities (1.0, 1.5, and 2.0 W/cm2) and exposure times (5 and 10 minutes), common in clinics, with linear scanning of the probe. Results The experiments indicated that the muscle/implant interface heated less than the muscle/bone interface, especially at intensities of 1.5 and 2.0 W/cm2, after 5 and 10 minutes of treatment. Conclusion The results suggest the possibility of using therapeutic ultrasound in patients with metallic implants, encouraging future research to develop evidence-based protocols and safe recommendations in physiotherapy.


Resumo Introdução O ultrassom utilizado em terapias diatérmicas visa atingir temperaturas entre 40 e 45 °C, sabendo-se que temperaturas acima de 45 °C podem causar necrose tecidual e queimaduras. Muitas pesquisas têm sido realizadas para estudar o efeito do ultrassom terapêutico na presença de implantes metálicos, utilizando phantoms (corpos de prova) e animais in vivo e ex vivo. Na maioria dessas pesquisas, o cabeçote ultrassônico está fixo em uma área, enquanto que na prática clínica recomenda-se que ele seja movimentado para evitar eventuais sobreaquecimentos locais. Objetivo Analisar o campo térmico na interface músculo-osso em phantoms na presença ou ausência de implantes metálicos após a aplicação do ultrassom terapêutico. Métodos Foram elaborados phantoms compostos de camadas simuladoras de gordura e músculo e de uma camada de osso de costela bovina, sendo esta com e sem implante metálico de titânio. O experimento envolveu diferentes intensidades (1.0, 1.5 e 2.0 W/cm2) e tempos de exposição (5 e 10 minutos) comuns em clínica, com varredura linear do cabeçote. Resultados Os experimentos indicaram que a interface músculo/implante aqueceu menos do que a interface músculo/osso, especialmente nas intensidades de 1.5 e 2.0 W/cm2, após 5 e 10 minutos de tratamento. Conclusão Os resultados obtidos apontam para a possibilidade de utilização do ultrassom terapêutico em pacientes com implantes metálicos, incentivando pesquisas futuras para desenvolver protocolos baseados em evidências e recomendações seguras na fisioterapia.

11.
Foods ; 12(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37761036

RESUMO

The nixtamalization process used for tortilla production entails extended processing time and generates pollutant effluents. Ohmic heating (OH) is an emerging technology that uses an alternating electric current for rapid and uniform food heating and mitigates effluent concerns. However, gaps exist in nutrient bioavailability studies. In this work, we assessed OH's impact on tortilla nutritional value, protein, and calcium using a rat model. Twenty-five male Wistar rats were fed one of four diets for 21 days: raw corn (RC) as an experimental control, OH-processed tortillas (OHTs), traditionally processed tortillas (TPTs), commercial tortillas (CTs), and a casein diet (CD) as a growth control. Despite similar protein and macronutrient profiles, OH significantly enhanced insoluble fiber content. The weight gain sequence was OHTs > TPTs > CTs > RC. OHTs exhibited superior protein digestibility (88.52%), which was 3% higher than other diets. The serum albumin (2.63-2.73 g/dL) indicated moderate malnutrition due to the tortilla's lower protein content. Nonetheless, the protein efficiency ratio (1.2-1.74) showed no significant difference from TPTs. Bone characteristics and fracture strength resembled the tortilla-fed groups, surpassing RC. X-ray diffraction and scanning electron microscopy confirmed that the OHT and TPT diets improved male rat bone thickness and crystallinity. The findings suggest the potential for OH as an eco-friendly tortilla production method, maintaining nutritional value comparable to traditional methods.

12.
Nanomaterials (Basel) ; 13(17)2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37686958

RESUMO

This study presents an alternative approach to directly synthesizing magnetite nanoparticles (MNPs) in the presence of Vitis vinifera, Vaccinium corymbosum, and Punica granatum derived from natural sources (grapes, blueberries, and pomegranates, respectively). A modified co-precipitation method that combines phytochemical techniques was developed to produce semispherical MNPs that range in size from 7.7 to 8.8 nm and are coated with a ~1.5 nm thick layer of polyphenols. The observed structure, composition, and surface properties of the MNPs@polyphenols demonstrated the dual functionality of the phenolic groups as both reducing agents and capping molecules that are bonding with Fe ions on the surfaces of the MNPs via -OH groups. Magnetic force microscopy images revealed the uniaxial orientation of single magnetic domains (SMDs) associated with the inverse spinel structure of the magnetite (Fe3O4). The samples' inductive heating (H0 = 28.9 kA/m, f = 764 kHz), measured via the specific loss power (SLP) of the samples, yielded values of up to 187.2 W/g and showed the influence of the average particle size. A cell viability assessment was conducted via the MTT and NRu tests to estimate the metabolic and lysosomal activities of the MNPs@polyphenols in K562 (chronic myelogenous leukemia, ATCC) cells.

13.
Braz. dent. j ; Braz. dent. j;34(4): 115-126, July-Aug. 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS, BBO - Odontologia | ID: biblio-1520337

RESUMO

Abstract This study was aimed at analyzing the surface properties of a universal resin composite and evaluating the effect of preheating on its physicochemical properties. Two commercial resin composites were used under two conditions: Filtek Universal Restorative (UR); UR preheated (URH); Filtek Supreme (FS) and FS preheated (FSH). The film thickness (FT) test (n = 10) was done using two glass slabs under compression. Flexural strength (FLS) and modulus (FLM) were evaluated using a three-point flexion test (n = 10). Polymerization shrinkage stress (PSS) was evaluated in a universal testing machine (n = 5). Gap width (GW) between composite and mold was measured in internally polished metallic molds (n = 10). The degree of conversion (DC) was evaluated by Fourier Transform Infrared spectroscopy (n = 3). The morphology of the filler particles was checked by scanning electron microscope (SEM) and EDX analysis. Surface gloss (SG) and surface roughness (SR) were evaluated before and after mechanical brushing (n = 10). The outcomes were submitted to 2-way ANOVA and Tukey's test (α = 0.05). Lower mean values of FT were observed for the preheated groups when compared to the non-preheated groups. URH and FSH showed higher mean values of FLS and FLM when compared with UR and FS. No differences were observed between groups in the PSS test. The GW was higher for the UR and FS groups when compared with URH and FSH. The DC was higher for preheated resin composites when compared to the non-preheated groups. The SR of the UR composite was higher than the FS after mechanical brushing, while the SG was higher for the FS groups. In conclusion, the universal resin composite tested generally presented similar physicochemical properties compared with the nanofilled resin composite and either similar or slightly inferior surface properties. The preheating improved or maintained all properties evaluated.


Resumo Neste estudo avaliou-se propriedades físico-químicas e de superfície de um compósito universal pré-aquecido e comparado a um compósito convencional. Foram utilizados dois compósitos comerciais: Filtek Universal Restorative (UR); UR pré-aquecido (URH); Filtek Supreme (FS) e FS pré-aquecido (FSH). O teste de espessura de película (EP) (n = 10) foi feito usando duas placas de vidro sob compressão. A resistência à flexão (RF) e o módulo flexural (MF) foram avaliados por meio do teste de flexão de três pontos (n = 10). A tensão de contração de polimerização (TCP) foi avaliada em uma máquina de teste universal (n = 8). A largura da fenda (LF) entre o compósito e o molde foi medida em moldes metálicos polidos internamente (n = 10). O grau de conversão (GC) foi avaliado por espectroscopia de infravermelho com transformada de Fourier (n = 3). A morfologia das partículas de carga foi observada em microscopia eletrônica de varredura (MEV) e sua composição em EDX. Brilho superficial (BS) e rugosidade superficial (RS) foram avaliados antes e após escovação mecânica (n=10). Os resultados foram submetidos à ANOVA 2-fatores e as médias comparadas pelo teste de Tukey (α = 0,05). Menores valores médios de EP foram observados para os grupos pré-aquecidos quando comparados aos grupos não pré-aquecidos. URH e FSH apresentaram maiores valores médios de RF e MF quando comparados com UR e FS. Não foram observadas diferenças entre os grupos no teste TCP. A LF foi maior para os grupos UR e FS quando comparados com URH e FSH. O GC foi maior para os compósitos pré-aquecidos quando comparados aos não pré-aquecidos. A RS do compósito UR foi maior que o FS após a escovação mecânica, enquanto o BS foi maior para os grupos FS. Em conclusão, o compósito universal testado geralmente apresentou propriedades físico-químicas semelhantes em comparação ao compósito nanoparticulado e propriedades de superfície semelhantes ou ligeiramente inferiores. O pré-aquecimento melhorou ou manteve todas as propriedades avaliadas.

14.
Food Res Int ; 170: 112979, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37316016

RESUMO

This article studies the release of phenolic compounds during cocoa heating under vacuum, N2, and air atmospheres, and proposes fast heating (60 °C • s-1) as a methodology that allows the release of polyphenols from fermented cocoa powder. We aim to demonstrate that gas phase transport is not the only mechanism to extract compounds of interest and that convective-type mechanisms can facilitate the process by reducing their degradation. The oxidation and transport phenomena were evaluated both in the extracted fluid and in the solid sample during the heating process. Polyphenols transport phenomena were assessed based on the fluid (chemical condensate compounds) that was collected cold with an organic solvent (methanol) in a hot plate reactor. Out of all the polyphenolic compounds present in cocoa powder, we assessed specifically the release of catechin and epicatechin. We found that high heating rates combined with vacuum or N2 favor the ejection of liquids; then, it is possible to extract compounds such as catechin-which is dissolved/entrained and transported in the ejected liquids-and avoid degradation phenomena.


Assuntos
Catequina , Chocolate , Calefação , Fenóis , Polifenóis
15.
Nano Lett ; 23(7): 2703-2709, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36952678

RESUMO

Obtaining arrays of single nanoparticles with three-dimensional complex shapes is still an open challenge. Current nanolithography methods do not allow for the preparation of nanoparticles with complex features like nanostars. In this work, we investigate the optical printing of gold nanostars of different sizes as a function of laser wavelength and power. We found that tuning the laser to the main resonances of the nanostars in the near-infrared makes it possible to avoid nanoparticles reshaping due to plasmonic heating, enabling their deposition at the single particle level and in ordered arrays.

16.
Materials (Basel) ; 16(4)2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36836991

RESUMO

Copper oxide is a widely studied compound in wastewater decontamination, hydrogen production, solar cell production, and sensor fabrication. In recent years, many architectures and structures with the potential for developing clean technologies have been synthesized. A procedure by thermal oxidation to grow electrical insolate Cu2O films on copper surfaces in an air atmosphere was developed. The results of the morphological and structural characterization of the copper oxide layers evidence the presence of Cu2O polycrystalline films. The films have polyhedral architectures of approximately 1.4 µm thickness and are electrically insulating. A novel copper resistive furnace was built using this copper oxide film which was used as an electrical insulator between the electrical resistance of the heater and the surface of the copper thermal block. The application improves the efficiency of the resistive furnace in terms of the temperature reached and the thermal coupling response time relative to the performance of conventional furnaces using ceramic insulation. Over the entire operating temperature range explored for the same power supply, the copper oxide-coated furnace achieved higher temperatures and faster response times than the traditionally coated furnace.

17.
Data Brief ; 47: 108854, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36798599

RESUMO

The present work exhibits the dynamic viscosity profile data of three distinct nanofluids, at a constant shear stress, and within a range of temperatures that include below-ambient conditions (from -10 to 20 °C). The nanofluids were as follows. Nanofluid I: 30% ethylene glycol and 70% distilled water (v/v), with graphene (0.32% in mass); Nanofluid II: 30% engine coolant NBR 13705; ASTM D-3306; ASTM D-4985) and 70% distilled water (v/v), with graphene (0.2% in mass); and Nanofluid III: 30% engine coolant and 70% distilled water (v/v), with Multi-Walled Carbon Nanotubes (MWCNT) (0.2% in mass). The present work was motivated by the scarcity of experimental data on the temperature dependence of viscosity for graphene, MWCNT, and their hybrid nanofluids, at below-ambient temperatures.

18.
J Sci Food Agric ; 103(6): 2773-2785, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36598243

RESUMO

BACKGROUND: Nixtamalized flour snacks such as tortilla chips are widely consumed across the world, but they are nutritionally poor and contribute to obesity and other non-communicable diseases. The production of healthy versions of such snacks, by incorporating vegetables and improving the quality of the flours used in their formulation, could help address these nutritional challenges. This study compared the fortification of baked tortilla chips with vegetable leaf powders (kale and wild amaranth at 0%, 4%, 8%, and 16% w/w) and using two types of nixtamalized flour: traditional (TNF) and with ohmic heating (OHF). RESULTS: Overall, the use of OHF increased 1.88 times the fibre in enriched and non-enriched snacks with respect to TNF, but the latter had 1.85 times more protein. Addition of 16% of vegetable powders increased protein (kale = 1.4-fold; amaranth = 1.3-fold) and dietary fibre (kale = 1.52-fold; amaranth = 1.7-fold). Amaranth enrichment improved total phenolic content (TPC) and total flavonoid content (TFC) of chips at least 1.2 and 1.63 times, respectively. OHF chips also had higher bound TPC than TNF ones, regardless of vegetable addition. Combinations of OHF with 16% amaranth produced chips 1.74-fold higher in antioxidant capacity than non-enriched ones, due to increased content of phenolics such as ferulic acid. CONCLUSION: This work showed that tortilla chips made using nixtamalized flour produced with assisted ohmic heating, alone or in combination with wild amaranth leaf powder, could be used in the production of healthy maize snacks to enhance their prospective antioxidant activity and nutritional value. © 2023 Society of Chemical Industry.


Assuntos
Amaranthus , Brassicaceae , Verduras/metabolismo , Farinha/análise , Manipulação de Alimentos/métodos , Lanches , Calefação , Estudos Prospectivos , Suplementos Nutricionais , Antioxidantes/análise , Fenóis/análise , Brassicaceae/metabolismo , Amaranthus/química
19.
Electrophoresis ; 44(1-2): 268-297, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36205631

RESUMO

Temperature is a critical-yet sometimes overlooked-parameter in microfluidics. Microfluidic devices can experience heating inside their channels during operation due to underlying physicochemical phenomena occurring therein. Such heating, whether required or not, must be monitored to ensure adequate device operation. Therefore, different techniques have been developed to measure and control temperature in microfluidic devices. In this contribution, the operating principles and applications of these techniques are reviewed. Temperature-monitoring instruments revised herein include thermocouples, thermistors, and custom-built temperature sensors. Of these, thermocouples exhibit the widest operating range; thermistors feature the highest accuracy; and custom-built temperature sensors demonstrate the best transduction. On the other hand, temperature control methods can be classified as external- or integrated-methods. Within the external methods, microheaters are shown to be the most adequate when working with biological samples, whereas Peltier elements are most useful in applications that require the development of temperature gradients. In contrast, integrated methods are based on chemical and physical properties, structural arrangements, which are characterized by their low fabrication cost and a wide range of applications. The potential integration of these platforms with the Internet of Things technology is discussed as a potential new trend in the field.


Assuntos
Técnicas Analíticas Microfluídicas , Temperatura , Microfluídica/métodos , Dispositivos Lab-On-A-Chip
20.
Ciênc. rural (Online) ; 53(3): e20210731, 2023. ilus, tab
Artigo em Inglês | VETINDEX | ID: biblio-1412115

RESUMO

The heating rate used during semen thawing plays an important role in reducing structural and functional damage to spermatozoa. In this study, we evaluated the influence of thawing temperature on semen quality, reactive oxygen species (ROS) production, and mitochondrial activity of cryopreserved bovine semen. A total of 195 straws of 0.5 mL from five Holstein Friesian bulls were used (39 straws per bull). Samples underwent 8 to 22 years of storage; they were processed under a standard protocol with tris-egg yolk and stored in liquid nitrogen. Samples were thawed for 30 seconds in a water bath at T1: 36 °C, T2: 38 °C or T3: 40 °C. Sperm motility and kinematics, morphology, structural membrane integrity (SMI), functional membrane integrity (FMI), acrosome integrity (AI), ROS, and mitochondrial membrane potential (ΔΨM) of post-thawing bovine sperm were evaluated. Generalized linear models were fitted to the data. Each model included the effects of bull, storage time, and treatment. The Shapiro-Wilk test was used to assess data normality, and means were compared using the Tukey test. T2 and T3 showed better results for sperm motility and kinematic parameters, SMI (%) (T1 41.9 ± 2.3; T2 45.7 ± 1.9; T3 47.4 ± 2.8), ROS (RFU/min) (T1 0.026 ± 0.007; T2 0.032 ± 0.001; T3 0.031 ± 0.001) and high-ΔΨM (RFU x 103) (67.1± 0,4; 71.3 ± 0.4; 74.2 ± 0.4) (P < 0.05). However, T1 had higher FMI (39.3 ± 2.3) than T2 (34.0 ± 1.9) (P < 0.05), though not significantly (P > 0.05) different from T3 (38.4 ± 2.2). Thawing temperatures of 38 °C and 40 °C increases motility, kinetics, membrane integrity, mitochondrial activity and ROS of cryopreserved bovine semen, compared with more conventional thawing at 36 °C.


A taxa de aquecimento usada durante o descongelamento do sêmen desempenha um papel importante na redução dos danos estruturais e funcionais nos espermatozóides. O objetivo desta pesquisa foi avaliar a influência da temperatura de descongelamento na qualidade do sêmen, produção de espécies reativas de oxigênio (ROS) e atividade mitocondrial do sêmen bovino criopreservado. Foram utilizados 195 palhetas de 0,5 mL de cinco touros Holstein Friesian (39 palhetas por touro). As amostras passaram por oito a 22 anos de armazenamento e foram processadas sob protocolo padrão com Tris-gema de ovo e armazenadas em nitrogênio líquido. As temperaturas de descongelamento foram T1: 36 °C, T2: 38 °C, T3: 40 °C, cada uma por 30 segundos em banho-maria. Pós-descongelamento, a motilidade e cinética dos espermatozoides, morfologia, integridade estrutural da membrana (SMI), integridade funcional da membrana (FMI), integridade acrossomal (AI), ROS e potencial de membrana mitocondrial (ΔΨM) foram avaliados. Modelos lineares generalizados foram ajustados. Cada modelo incluiu os efeitos de touro, tempo de armazenamento e tratamento. A normalidade dos dados foi avaliada pelo teste de Shapiro-Wilk e as médias comparadas pelo teste de Tukey. T2 e T3 apresentaram resultados mais elevados para a maioria dos parâmetros de motilidade e cinemática espermática, SMI (%) (T1 41,9 ± 2,3; T2 45,7 ± 1,9; T3 47,4 ± 2,8), ROS (RFU/min) (T1 0,026 ± 0,007; T2 0,032 ± 0,001; T3 0,031 ± 0,001) e alto ΔΨM (RFU x 103) (67,1 ± 0,4; 71,3 ± 0,4; 74,2 ± 0,4) (P < 0,05). No entanto, T1 apresentou maior FMI (%) (39,3 ± 2,3) em comparação a T2 (34,0 ± 1,9) (P < 0,05), mas não foi diferente do T3 (38,4 ± 2,2) (P > 0,05). Conclui-se que as temperaturas de descongelamento de 38 °C e 40 °C produzem um aumento na motilidade, cinética, integridade de membrana, atividade mitocondrial e ROS do sêmen bovino criopreservado, em comparação com o uso mais convencional de uma temperatura de descongelamento de 36 °C.


Assuntos
Animais , Bovinos , Preservação do Sêmen/veterinária , Criopreservação/veterinária , Análise do Sêmen/veterinária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA