Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Parasitol Res ; 118(2): 517-538, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30552577

RESUMO

Transcription factor IID (TFIID) is a cornerstone in the transcription initiation in eukaryotes. It is composed of TBP and approximately 14 different subunits named TBP-associated factors (TAFs). TFIID has a key role in transcription of many genes involved in cell proliferation, cell growth, cell cycle, cell cycle checkpoint, and various other processes as well. Entamoeba histolytica, the protozoan parasite responsible for human amoebiasis, represents a major global health concern. Our research group has previously reported the genes coding the TATA box-binding protein (EhTBP) and TBP-related factor 1 (EhTRF1), which displayed different mRNA levels in trophozoites under different stress conditions. In this work, we identified the TBP-associated factor 1 (Ehtaf1) gene in the E. histolytica genome, which possess a well-conserved DUF domain and a Bromo domain located in the middle and C-terminus of the protein, respectively. The EhTAF1-DUF domain tertiary structure is similar to the corresponding HsTAF1 DUF domain. RT-qPCR experiments with RNA isolated from trophozoites harvested at different time points of the growth curve and under different stress conditions revealed that the Ehtaf1 gene was found slightly upregulated in the death phase of growth curve, but under heat shock stress, it was found upregulated 10 times, suggesting that Ehtaf1 might have an important role in the heat shock stress response. We also found that EhTAF1 is expressed in the nucleus and cytoplasm at 37 °C, but under heat shock stress, it is overexpressed in both the nucleus and cytoplasm, and partially colocalized with EhHSP70 in cytoplasm.


Assuntos
Entamoeba histolytica/fisiologia , Resposta ao Choque Térmico/genética , Histona Acetiltransferases/genética , Histona Acetiltransferases/metabolismo , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Fator de Transcrição TFIID/genética , Fator de Transcrição TFIID/metabolismo , Animais , Núcleo Celular/metabolismo , Citoplasma/metabolismo , Entamoeba histolytica/genética , Humanos , Transporte Proteico , RNA Mensageiro/metabolismo , Trofozoítos/metabolismo , Regulação para Cima
2.
Biogerontology ; 17(5-6): 883-892, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27488377

RESUMO

An extremely high (about 100 %) increase in longevity is reported for a subset of recombinant inbred lines (RILs) of Drosophila melanogaster subjected to a cyclic heat stress throughout the adult life. Previous work showed that both longevity and heat sensitivity highly differed among RILs. The novel heat stress treatment used in this study consisted of 5 min at 38 °C applicated approximately every 125 min throughout the adult life starting at the age of 2 days. In spite of the exceptionally high increase in longevity in a set of RILs, the same heat stress treatment reduced rather than increased longevity in other RILs, suggesting that heat-induced hormesis is dependent on the genotype and/or the genetic background. Further, one quantitative trait locus (QTL) was identified for heat-induced hormesis on chromosome 2 (bands 28A1-34D2) in one RIL panel (RIL-D48) but it was not significant in its reciprocal panel (RIL-SH2). The level of heat-induced hormesis showed a sexual dimorphism, with a higher number of lines exhibiting higher hormesis effects in males than in females. The new heat stress treatment in this study suggests that longevity can be further extended than previously suggested by applying a cyclic and mild stress throughout the life, depending on the genotype.


Assuntos
Envelhecimento/genética , Drosophila melanogaster/genética , Resposta ao Choque Térmico/genética , Longevidade/genética , Animais , Animais Endogâmicos/genética , Proteínas de Drosophila/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/genética , Hormese/genética , Masculino , Locos de Características Quantitativas/genética , Recombinação Genética/genética , Caracteres Sexuais , Termotolerância/genética
3.
Cell Stress Chaperones ; 21(5): 763-72, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27230213

RESUMO

The mechanisms underlying oxidative stress (OS) resistance are not completely clear. Caenorhabditis elegans (C. elegans) is a good organism model to study OS because it displays stress responses similar to those in mammals. Among these mechanisms, the insulin/IGF-1 signaling (IIS) pathway is thought to affect GABAergic neurotransmission. The aim of this study was to determine the influence of heat shock stress (HS) on GABAergic activity in C. elegans. For this purpose, we tested the effect of exposure to picrotoxin (PTX), gamma-aminobutyric acid (GABA), hydrogen peroxide, and HS on the occurrence of a shrinking response (SR) after nose touch stimulus in N2 (WT) worms. Moreover, the effect of HS on the expression of UNC-49 (GABAA receptor ortholog) in the EG1653 strain and the effect of GABA and PTX exposure on HSP-16.2 expression in the TJ375 strain were analyzed. PTX 1 mM- or H2O2 0.7 mM-exposed worms displayed a SR in about 80 % of trials. GABA exposure did not cause a SR. HS prompted the occurrence of a SR as did PTX 1 mM or H2O2 0.7 mM exposure. In addition, HS increased UNC-49 expression, and PTX augmented HSP-16.2 expression. Thus, the results of the present study suggest that oxidative stress, through either H2O2 exposure or application of heat shock, inactivates the GABAergic system, which subsequently would affect the oxidative stress response, perhaps by enhancing the activity of transcription factors DAF-16 and HSF-1, both regulated by the IIS pathway and related to hsp-16.2 expression.


Assuntos
Resposta ao Choque Térmico , Receptores de GABA-A/fisiologia , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Picrotoxina/farmacologia , Receptores de GABA-A/genética , Receptores de GABA-A/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA