Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Microb Ecol ; 87(1): 29, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191681

RESUMO

The Cerrado is the most diverse tropical savanna worldwide and the second-largest biome in South America. The objective of this study was to understand the heterogeneity and dynamics of arbuscular mycorrhizal fungi (AMF) in different types of natural Cerrado vegetation and areas that are transitioning to dryer savannas or tropical rainforests and to elucidate the driving factors responsible for the differences between these ecosystems. Twenty-one natural sites were investigated, including typical Cerrado forest, typical Caatinga, Atlantic Rainforest, transitions between Cerrado and Caatinga, Cerrado areas near Caatinga or rainforest, and Carrasco sites. Spores were extracted from the soils, counted, and morphologically analyzed. In total, 82 AMF species were detected. AMF species richness varied between 36 and 51, with the highest richness found in the area transitioning between Cerrado and Caatinga, followed by areas of Cerrado close to Caatinga and typical Cerrado forest. The types of Cerrado vegetation and the areas transitioning to the Caatinga shared the highest numbers of AMF species (32-38). Vegetation, along with chemical and physical soil parameters, affected the AMF communities, which may also result from seasonal rainfall patterns. The Cerrado has a great AMF diversity and is, consequently, a natural refuge for AMF. The plant and microbial communities as well as the diversity of habitats require urgent protection within the Cerrado, as it represents a key AMF hotspot.


Assuntos
Microbiota , Micorrizas , Micorrizas/genética , Brasil , Florestas , Floresta Úmida , Solo
2.
Microorganisms ; 11(12)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38138027

RESUMO

Coffee (Coffea arabica) is among the world's most economically important crops. Coffee was shown to be highly dependent on arbuscular mycorrhizal fungi (AMF) in traditionally managed coffee plantations in the tropics. The objective of this study was to assess AMF species richness in coffee plantations of four provinces in Perú, to isolate AMF isolates native to these provinces, and to test the effects of selected indigenous AMF strains on coffee growth. AMF species were identified by morphological tools on the genus level, and if possible further to the species level. Two native species, Rhizoglomus variabile and Nanoglomus plukenetiae, recently described from the Peruvian mountain ranges, were successfully cultured in the greenhouse on host plants. In two independent experiments, both species were assessed for their ability to colonize coffee seedlings and improve coffee growth over 135 days. A total of 35 AMF morphospecies were identified from 12 plantations. The two inoculated species effectively colonized coffee roots, which resulted in 3.0-8.6 times higher shoot, root and total biomass, when compared to the non-mycorrhizal controls. R. variabile was superior to N. plukenetiae in all measured parameters, increasing shoot, root, and total biomass dry weight by 4.7, 8.6 and 5.5 times, respectively. The dual inoculation of both species, however, did not further improve plant growth, when compared to single-species inoculations. The colonization of coffee by either R. variabile or N. plukenetiae strongly enhances coffee plant growth. R. variabile, in particular, offers enormous potential for improving coffee establishment and productivity. Assessment of further AMF species, including species from other AMF families should be considered for optimization of coffee growth promotion, both alone and in combination with R. variabile.

3.
PeerJ ; 11: e16151, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38025720

RESUMO

Background: Around the world, bamboos are ecologically, economically, and culturally important plants, particularly in tropical regions of Asia, America, and Africa. The association of this plant group with arbuscular mycorrhizal fungi belonging to the phylum Glomeromycota is still a poorly studied field, which limits understanding of the reported ecological and physiological benefits for the plant, fungus, soil, and ecosystems under this symbiosis relationship. Methods: Through a qualitative systematic review following the PRISMA framework for the collection, synthesis, and reporting of evidence, this paper presents a compilation of the research conducted on the biology and ecology of the symbiotic relationship between Glomeromycota and Bambusoideae from around the world. This review is based on academic databases enriched with documents retrieved using different online databases and the Google Scholar search engine. Results: The literature search yielded over 6,000 publications, from which 18 studies were included in the present review after a process of selection and validation. The information gathered from the publications included over 25 bamboo species and nine Glomeromycota genera from eight families, distributed across five countries on two continents. Conclusion: This review presents the current state of knowledge regarding the symbiosis between Glomeromycota and Bambusoideae, while reflecting on the challenges and scarcity of research on this promising association found across the world.


Assuntos
Glomeromycota , Micorrizas , Humanos , Simbiose , Glomeromycota/fisiologia , Ecossistema , Micorrizas/fisiologia , Plantas/microbiologia
4.
Braz J Microbiol ; 54(4): 2979-2990, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37864756

RESUMO

Plants associated with mycorrhizal fungi has the ability to establish on metal-contaminated soils playing an important role in phytoremediation programs. The objective of this study was to examine the presence of arbuscular mycorrhizal fungi (AMF) (spores density, diversity, indicator species, and root colonization) and dark septate endophytic fungi (DSE fungal root colonization) in three metal accumulator plants (Sorghum halepense, Bidens pilosa, and Tagetes minuta) growing in soils with high Pb content. The Pb content in AMF spores and plant biomass were also assessed. Rhizosphere soil samples were taken from the three dominant plant species at six study sites surrounding the abandoned Pb smelter and one uncontaminated site. The three studied plants were colonized by AMF and DSE fungi. A total of 24 AMF morphospecies were present in the Pb-contaminated areas. The AMF indicator species in the control site (non-contaminated area) was Funneliformis mosseae and in the most contaminated site were Gigaspora decipiens and Denticustata biornata. There was an increase in mycorrhizal variables such as the number of AMF vesicles, spore number, Pb content in AMF spores and plant biomass and DSE colonization (in Sorghum) with increasing soil Pb contamination, but a decrease in AMF diversity and richness was found. For upcoming soil restoration projects, it is crucial to understand the mycorrhizal fungi as well as the plant community that has adapted to the highly contaminated environment.


Assuntos
Micobioma , Micorrizas , Chumbo , Esporos Fúngicos , Solo , Raízes de Plantas/microbiologia , Microbiologia do Solo
5.
Braz J Microbiol ; 54(3): 1955-1967, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37410249

RESUMO

Arbuscular mycorrhizal fungi form symbiotic associations with 80-90% of all known plants, allowing the fungi to acquire plant-synthesized carbon, and confer an increased capacity for nutrient uptake by plants, improving tolerance to abiotic and biotic stresses. We aimed at characterizing the mycorrhizal community in the rhizosphere of Neoglaziovia variegata (so-called `caroa`) and Tripogonella spicata (so-called resurrection plant), using high-throughput sequencing of the partial 18S rRNA gene. Both plants are currently undergoing a bioprospecting program to find microbes with the potential of helping plants tolerate water stress. Sampling was carried out in the Caatinga biome, a neotropical dry forest, located in northeastern Brazil. Illumina MiSeq sequencing of 37 rhizosphere samples (19 for N. variegata and 18 for T. spicata) revealed a distinct mycorrhizal community between the studied plants. According to alpha diversity analyses, T. spicata showed the highest richness and diversity based on the Observed ASVs and the Shannon index, respectively. On the other hand, N. variegata showed higher modularity of the mycorrhizal network compared to T. spicata. The four most abundant genera found (higher than 10%) were Glomus, Gigaspora, Acaulospora, and Scutellospora, with Glomus being the most abundant in both plants. Nonetheless, Gigaspora, Diversispora, and Ambispora were found only in the rhizosphere of N. variegata, whilst Scutellospora, Paraglomus, and Archaeospora were exclusive to the rhizosphere of T. spicata. Therefore, the community of arbuscular mycorrhizal fungi of the rhizosphere of each plant encompasses a unique composition, structure and modularity, which can differentially assist them in the hostile environment.


Assuntos
Glomeromycota , Micorrizas , Micorrizas/genética , Brasil , Rizosfera , Poaceae , Microbiologia do Solo , Fungos , Florestas , Plantas , Raízes de Plantas/microbiologia
6.
Mycorrhiza ; 32(5-6): 425-438, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36207539

RESUMO

Climate change, the shortage of fertilizers and reduced land for cultivation have drawn attention to the potential aid provided by soil-borne organisms. Arbuscular mycorrhizal fungi (AMF) offer a wide range of ecosystem benefits and hence, understanding the mechanisms that control AMF occurrence and maintenance is essential for resilient crop production. We conducted a survey of 123 soybean fields located across a 75,000-km2 area of Argentina to explore AMF community composition and to quantify the impact of soil, climate, and geographical distance on these key soil organisms. First, based upon morphological identification of spores, we compiled a list of the AMF species found in the studied area and identified Acaulospora scrobiculata and Glomus fuegianum as the most frequent species. G. fuegianum abundance was negatively correlated with precipitation seasonality and positively correlated with mean annual precipitation as well as mycorrhizal colonisation of soybean roots. Second, we observed that species richness was negatively correlated with soil P availability (Bray I), clay content and mean annual precipitation. Finally, based on partitioning variation analysis, we found that AMF exhibited spatial patterning at a broad scale. Therefore, we infer that geographical distance was positively associated with spore community composition heterogeneity across the region. Nevertheless, we highlight the importance of precipitation sensitivity of frequent species, overall AMF richness and community composition, revealing a crucial challenge to forthcoming agriculture considering an expected change in global climate patterns.


Assuntos
Fabaceae , Micorrizas , Biodiversidade , Argila , Ecossistema , Fertilizantes , Fungos/fisiologia , Raízes de Plantas/microbiologia , Solo , Microbiologia do Solo , Glycine max
7.
Ciênc. rural (Online) ; 52(3): e20210011, 2022. tab, graf, ilus
Artigo em Inglês | VETINDEX | ID: biblio-1339673

RESUMO

This research identified arbuscular mycorrhizal fungi (AMF) in rhizosphere soil of grapevines with Grapevine Death and Decline symptoms (GDD) or asymptomatic healthy (H) plants, and characterized the relationship of AMF communities with soil chemical attributes. The AMF spore number ranged from 287 to 432 spores 50 cm-³ in soil with GDD plants, and from 357 to 464 spores 50 cm-³ in H plants, with no differences among vineyards or between GDD and H plants within each vineyard. We detected 42 species and 17 genera, and most taxa belonged to Acaulosporaceae or Glomeraceae. Claroideoglomus etunicatum, Funneliformis mosseae, and Archaeospora trappei were the most frequent species in all vineyards. Soil chemical attributes were not determinant for the occurrence of most fungal species; although, Entrophospora infrequens, Diversispora sp1 and Diversispora sp2 were associated with a vineyard having high soil copper. Vineyards harbor highly diverse AMF communities, which are determined by location.


Este trabalho teve como objetivo identificar fungos micorrízicos arbusculares (FMA) em solo rizosférico de videiras com sintomas de declínio e morte da videira (D) e em plantas saudáveis (S), e caracterizar a relação das comunidades de FMA com atributos químicos do solo. O número de esporos de FMA variou de 287 a 432 esporos 50 cm-³ em solo em plantas D, e de 357 a 464 esporos 50 cm-³ em plantas S, sem diferenças entre vinhedos ou entre plantas D e S dentro de cada vinhedo. Detectamos 42 espécies e 17 gêneros, sendo que a maioria dos táxons pertencia a Acaulosporaceae ou Glomeraceae. Claroideoglomus etunicatum, Funneliformis mosseae e Archaeospora trappei foram as espécies mais frequentes em todos os vinhedos. Os atributos químicos do solo não foram determinantes para a ocorrência da maioria das espécies de fungos, embora Entrophospora infrequens, Diversispora sp1 e Diversispora sp2 estivessem associados a um vinhedo com alto teor de cobre do solo. Os vinhedos abrigam comunidades FMA altamente diversificadas, que são determinadas pela localização.


Assuntos
Características do Solo/análise , Vitis/virologia , Micobioma/genética
8.
Microb Ecol ; 82(1): 122-134, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33410937

RESUMO

Arbuscular mycorrhizal fungi (AMF) play an important role in the dynamic of plant community in the south American Atlantic Rainforest biome. Even in protected areas, this biome is under several anthropic impacts, which can cause shifts in the soil microbiota, including AMF. This study aimed to determine the structure and composition of AMF community in areas of native Atlantic Forest and in natural regeneration and to identify which abiotic factors are influencing this community in these areas. Soil samples were collected at Monte Pascoal National and Historical Park, in Southern Bahia, in native and natural regeneration areas of Atlantic Forest in two seasons (rainy and dry). Greater number of glomerospores and richness and diversity of AMF were found in the area under regeneration, with differences between seasons being observed only for the number of glomerospores. Seventy-seven species of AMF were recorded, considering all areas and seasons, with Acaulospora and Glomus being the most representative genera. Greater abundance of species of the genera Acaulospora, Claroideoglomus, and Septoglomus was found in the regeneration area. The AMF community differed between the study areas, but not between seasons, with soil attributes (pH, K, Al, Mg, m, and clay) structuring factors for this difference in the AMF community. Atlantic Forest areas in natural regeneration and the soil edaphic factors provide changes in the structure and composition of the AMF community, increasing the richness and diversity of these fungi in conservation units.


Assuntos
Micorrizas , Biodiversidade , Florestas , Raízes de Plantas , Microbiologia do Solo
9.
Microb Ecol ; 82(1): 104-121, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32761501

RESUMO

The Brazilian dry forest (Caatinga) is located in one of the world's largest tropical semiarid regions, and it occurs on two large geological environments named the crystalline and sedimentary basins. In order to determine the structure and the main drivers of the composition of communities of arbuscular mycorrhizal fungi (AMF) in the Caatinga, we collected soil samples from the rhizosphere of Jatropha mollissima, J. mutabilis, and Mimosa tenuiflora, species that occur in crystalline and sedimentary areas. Ninety-six AMF taxa were identified from soils collected directly in the field and trap cultures. Acaulospora, Glomus, and Rhizoglomus represented almost 49% of the taxon richness. The composition of the AMF communities differed between the crystalline and sedimentary areas and between the rhizospheres of the three plant species. Coarse sand, total sand, natural clay, calcium, soil particles density, flocculation, pH, and base saturation were the principal edaphic variables related to the distribution of these organisms. We registered nine and 17 AMF species classified as indicators, for the geological environments and plant species, respectively. Glomerospores of Glomerales predominated in crystalline basins, whereas glomerospores of Gigasporales prevailed in sedimentary areas; among the plant species, lower number of glomerospores of Archaeosporales and Glomerales was recorded in the rhizosphere of J. mollissima. The results show that the AMF community composition is shaped by geological environments and plant hosts. In addition, soil characteristics, mainly physical attributes, significantly influence the structure of Glomeromycota communities occurring in areas of the Brazilian semiarid.


Assuntos
Micobioma , Micorrizas , Biodiversidade , Florestas , Raízes de Plantas , Rizosfera , Microbiologia do Solo
10.
Mycorrhiza ; 31(1): 117-126, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33205230

RESUMO

The International Culture Collection of (Vesicular-) Arbuscular Mycorrhizal Fungi-INVAM-the largest living culture collection of arbuscular mycorrhizal fungi (AMF) celebrated its 35th year in 2020. The authors record here the mission and goals of INVAM, its contribution as a living culture collection, some historical aspects of INVAM, and describe the advances in mycorrhizology and AMF systematics after INVAM moved to West Virginia University. This commentary emphasizes the importance of a living culture collection to preserve germplasm and to educate and assist researchers in mycorrhizal science.


Assuntos
Glomeromycota , Micorrizas
11.
FEMS Microbiol Lett ; 367(14)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32648900

RESUMO

Arbuscular mycorrhizal fungi (AMF) are a key soil functional group, with an important potential to increase crop productivity and sustainable agriculture including food security. However, there is clear evidence that land uses, crop rotations and soil features affect the AMF diversity and their community functioning in many agroecosystems. So far, the information related to AMF biodiversity in ecosystems like the Argentinean Puna, an arid high plateau where plants experience high abiotic stresses, is still scarce. In this work, we investigated morphological and molecular AMF diversity in soils of native corn, bean and native potato Andean crops, under a familiar land use, in Chaupi Rodeo (Jujuy, Argentina), without agrochemical supplements but with different histories of crop rotation. Our results showed that AMF morphological diversity was not only high and variable among the three different crop soils but also complemented by Illumina MiSeq data. The multivariate analyses highlighted that total fungal diversity is significantly affected by the preceding crop plants and the rotation histories, more than from the present crop species, while AMF communities are significantly affected by preceding crop only in combination with the effect of nitrogen and calcium soil concentration. This knowledge will give useful information on appropriate familiar farming.


Assuntos
Biodiversidade , Fungos/isolamento & purificação , Micorrizas/isolamento & purificação , Microbiologia do Solo , Argentina , Cálcio/análise , Cálcio/metabolismo , Produção Agrícola , Produtos Agrícolas/crescimento & desenvolvimento , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Ecossistema , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Micobioma , Micorrizas/classificação , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , Nitrogênio/análise , Nitrogênio/metabolismo , Solo/química
12.
Plants (Basel) ; 9(1)2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31906323

RESUMO

Gradual environmental changes are determining factors in the disposition of plants and associated organisms, such as arbuscular mycorrhizal fungi (AMF). The objective of this study was to evaluate the AMF species communities in a tropical semi-arid region of NE Brazil under decreasing clay content at a mountain top area forming a vegetative mosaic of dry forests, savanna-like shrubland and humid montane forests. Through field and trap culture samples, 80 species of AMF were identified belonging to 25 genera, of which Acaulospora and Glomus were the most representative. In general, representatives of the order Gigasporales were indicators of sites with lower clay content and showed greater abundance in these sites. As expected, less richness was found in the site with higher clay content, but there was no variation in the Shannon-Weaver index in the gradient studied. The areas showed different assemblies of AMF among the sites with higher and lower clay content, and the main factors structuring the species were carbon, clay and potential acidity. In addition, field samples and trap cultures showed different assemblies; through the use of cultures it was possible to detect additional species. Soil properties have been found to be determinants for the distribution of these microorganisms and further studies in different vegetation types can help to understand the ecological preferences of AMF species.

13.
Mycologia ; 112(1): 121-132, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31750794

RESUMO

Septoglomus mexicanum is here described as a new species of arbuscular mycorrhizal fungi (AMF; Glomeromycota) based on morphological and phylogenetic analyses. It was isolated from rhizospheric soil of two endemic Mexican legumes: Prosopis laevigata and Mimosa luisana, which grow in semiarid regions of central Mexico. Septoglomus mexicanum is characterized by forming globose spores of (154.5-)202.8(-228.9) µm diam and a spore wall consisting of four layers (SWL1-SWL4): outer wall layer (SWL1) hyaline, evanescent, (1.7-)3.2(-4.3) µm thick; SWL2 laminate and smooth, orange to reddish orange, (3.1-)4.5(-6.1) µm thick; SWL3 laminate, smooth, reddish orange to reddish brown, (4.1-)5.1(-5.7) µm thick; and SWL4 hyaline, semiflexible, (0.93-)1.2(-1.4) µm thick. None of the spore wall layers stain with Melzer's reagent. The subtending hypha has a color from yellowish to golden and presents a septum on spore base. Septoglomus mexicanum can be distinguished from all other Septoglomus species by spore size and color, by spore wall structure (four layers), and by color change of the subtending hypha. Phylogenetic analysis based on the AMF extended DNA barcode covering a 1.5-kb fragment of the small subunit (SSU), internal transcribed spacer region (ITS1-5.8S-ITS2), and the large subunit (LSU) of rRNA genes places S. mexicanum in the genus Septoglomus, separated from other described Septoglomus species, especially S. turnauae, with whom it could be confused morphologically. All available sequences in public databases suggest that this new fungal species has not yet been previously detected. Thus, there are currently 149 Glomeromycota species registered in Mexico, representing 47.4% of the known species worldwide.


Assuntos
Clima Desértico , Glomeromycota/classificação , Micorrizas/classificação , DNA Fúngico/genética , DNA Espaçador Ribossômico/genética , Fabaceae/microbiologia , Glomeromycota/citologia , Glomeromycota/genética , Glomeromycota/crescimento & desenvolvimento , Hifas/citologia , Hifas/crescimento & desenvolvimento , México , Micorrizas/citologia , Micorrizas/genética , Micorrizas/crescimento & desenvolvimento , RNA Ribossômico/genética , Rizosfera , Análise de Sequência de DNA , Esporos Fúngicos/classificação , Esporos Fúngicos/citologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
14.
Rev. biol. trop ; Rev. biol. trop;68(4)2020.
Artigo em Inglês | LILACS, SaludCR | ID: biblio-1507719

RESUMO

Introduction: The expansion and intensification of agriculture causes profound changes at a global scale, which generates a strong impact on crop productivity and consequently, a decrease in the biodiversity associated. Ilex paraguariensis, known as yerba mate, is a native species from South America and it has been introduced in the world market (e.g. Middle East, Europe, and United States) due to its multiple nutritional benefits and antioxidant properties. The association of plants of I. paraguarensis with arbuscular mycorrhizal fungi (AMF), especially under field conditions, has been scarcely reported so far. Objective: The aim of this work was to assess the species composition, richness, spore density and diversity of Glomeromycota communities of yerba mate under different crop and natural conditions, seasonally over a 2-year period. Methods: Soil samples were extracted in winter and summer from five productive sites (situations 1-5), with contrasting crop conditions with regard to historical management, as a reference situation (situation 6). Spores were identified following morphological criteria. Results: Acaulosporaceae and Glomeraceae presented the highest spore densities in all sampling sites/ seasons/years. The lowest spore density and diversity index was recorded in 2014, when rainfall was higher than in 2013. Discussion: We reported Acaulospora capsicula detected by morphological analysis, for the first time in South America. Differences between years could be attributed to rainfall. This study contributes to the knowledge of the dynamics and factors that influence the structure of AMF communities over time. This information would be valuable to generate conservation strategies for this group of microorganisms, which are key to the sustainable development of yerba mate cultivation systems.


Introducción: La expansión e intensificación de la agricultura provoca profundos cambios a escala mundial, lo que genera un fuerte impacto en la productividad de los cultivos y, en consecuencia, una disminución de la biodiversidad asociada. Ilex paraguariensis, conocida como yerba mate, es una especie nativa de América del Sur y se ha introducido en el mercado mundial (por ejemplo, Medio Oriente, Europa y Estados Unidos) debido a sus múltiples beneficios nutricionales y propiedades antioxidantes. La asociación de plantas de I. paraguarensis con hongos arbusculares (AMF), especialmente en condiciones de campo, ha sido escasamente documentada. Objetivo: El objetivo de este trabajo fue evaluar estacionalmente durante un período de 2 años: la composición de especies, la riqueza, la densidad de esporas y la diversidad de las comunidades Glomeromycota de yerba mate en diferentes cultivos y condiciones naturales. Métodos: Se extrajeron muestras de suelo en invierno y verano de cinco sitios productivos con condiciones de cultivo (situaciones 1-5), en contraste conal manejo histórico como situación de referencia (situación 6). Las esporas se identificaron siguiendo criterios morfológicos. Resultados: Acaulosporaceae y Glomeraceae presentaron las mayores densidades de esporas en todos los sitios de muestreo / estaciones / años. El índice más bajo de densidad y diversidad de esporas se registró en 2014, cuando las precipitaciones fueron más altas que en 2013. Discusión: Se registra por primera vez para América del Sur a Acaulospora capsicula identificada por caracteres morfológicos. Las diferencias entre años podrían atribuirse a las precipitaciones. Este estudio contribuye al conocimiento de la dinámica y los factores que influyen en la estructura de las comunidades AMF a lo largo del tiempo. Esta información sería valiosa para generar estrategias de conservación para este grupo de microorganismos, que son clave para el desarrollo sostenible de los sistemas de cultivo de yerba mate.


Assuntos
Ilex paraguariensis/crescimento & desenvolvimento , Fungos/crescimento & desenvolvimento , Argentina , Ecossistema
15.
Braz J Microbiol ; 50(4): 1011-1020, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31396863

RESUMO

Positive feedback between arbuscular mycorrhizal fungal (AMF) and vascular plants can contribute to plant species establishment, but how this feedback affects plant invasion by Prosopis juliflora SW. (DC.), or resistance to invasion by Mimosa tenuiflora (Willd.) Poir in Brazilian semi-arid region is not well known. In this work, we tested how modified and native AMF communities affect the establishment of P. juliflora and M. tenuiflora plants. We examined the effects of inoculation with modified and native AMF communities on number of AMF spores, root colonization, number of N-fixing nodules, plant dry biomass, plant phosphorous concentration, and plant responsiveness to mycorrhizas of P. juliflora and M. tenuiflora. We found that the modified AMF community enhanced the root colonization, plant dry biomass, and plant phosphorous concentration of invasive P. juliflora, whereas native AMF enhanced M. tenuiflora. Our results demonstrate that the invasive P. juliflora alters soil AMF community composition, and this change generates positive feedback to the invasive P. juliflora itself and decreases AMF associations with native M. tenuiflora.


Assuntos
Fabaceae/microbiologia , Fungos/isolamento & purificação , Mimosa/microbiologia , Micorrizas/isolamento & purificação , Biodiversidade , Brasil , Fabaceae/crescimento & desenvolvimento , Fungos/classificação , Fungos/genética , Fungos/metabolismo , Espécies Introduzidas , Mimosa/crescimento & desenvolvimento , Micorrizas/classificação , Micorrizas/genética , Micorrizas/metabolismo , Fósforo/metabolismo , Raízes de Plantas/microbiologia , Solo/química , Microbiologia do Solo , Esporos Fúngicos/classificação , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/isolamento & purificação , Esporos Fúngicos/metabolismo
16.
Microb Ecol ; 78(4): 904-913, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30976842

RESUMO

Changes in relief in montane areas, with increasing altitude, provide different biotic and abiotic conditions, acting on the species of arbuscular mycorrhizal fungi (AMF). The objective of this work was to determine the influence of altitude, edaphic factors, and vegetation on the AMF species in a mountainous area. The list of AMF species was obtained from morphological identification of the spores, with 72 species recovered from field samples and trap cultures. Lower levels of Shannon's diversity occurred only at lower altitude; however, there was no difference in AMF richness. The structure of the AMF assembly between the two highest altitudes was similar and differed in relation to the lower altitude. There was variation in the distribution of AMF species, which was related to soil texture and chemical factors along the altitude gradient. Some species, genera, and families were indicative of a certain altitude, showing the preference of fungi for certain environmental conditions, which may aid in decisions to conserve montane ecosystems.


Assuntos
Micobioma/fisiologia , Micorrizas/isolamento & purificação , Microbiologia do Solo , Altitude , Brasil , Micorrizas/classificação , Micorrizas/fisiologia , Clima Tropical
17.
Acta amaz. ; 48(4): 321-329, Oct.-Dec. 2018. mapas, tab, graf
Artigo em Inglês | VETINDEX | ID: vti-736292

RESUMO

Babassu, Attalea speciosa (Arecaceae) is a ruderal palm native to Amazonia, which turned dominant in frequently burned lands throughout the arc of deforestation and other degraded lands, in extreme cases attaining complete dominance. This study investigated arbuscular mycorrhizal fungi (AMF) as one possible explanation for the outstanding ecological success of this exceptional palm. We explored the relationships between the babassu palm and native arbuscular mycorrhizal fungi and babassu effects on the AMF richness and mycorrhizal inoculum potential (MIP) in the eastern periphery of Amazonia. For this purpose, we sampled topsoil (0-20 cm) at the onset of the rainy season from a 5-year-old secondary forest regrowth (SEC) area with three levels of babassu dominance (sites with 10, 50 and 70% babassu biomass shares), and at three distances (0, 2.5 and 4 m) from isolated babassu patches within a degraded pasture (PAS), both with five replications per treatment. Glomerospore density varied from 100 to 302 per gram of soil, 56% higher in SEC than PAS. We identified a total of 16 AMF species, with dominance of Acaulospora (six species) followed by Glomus (three species). AMF richness increased with babassu dominance in SEC sites, and reduced with distance from babassu patches within the PAS. The colonization rate of babassu roots was higher in SEC than in PAS, whereas MIP was similar in both areas and without treatment differences. Our study points to strong mycorrhizal association of the babassu palm as a potential mechanism for its outstanding ecological success in degraded lands.(AU)


Babaçu, Attalea speciosa (Arecaceae) é uma palmeira ruderal nativa da Amazônia, dominante em terras frequentemente queimadas ao longo do arco de desmatamento e outras áreas degradadas, em casos extremos atingindo domínio completo. Este estudo investigou os fungos micorrízicos arbusculares (FMA) como possível explicação do sucesso ecológico desta palmeira. Nós exploramos as relações entre o babaçu e glomerosporos, efeitos do babaçu na riqueza destes fungos e o potencial do inóculo micorrízico (PIM) na periferia oriental da Amazônia. Amostras de solo (0-20 cm) foram coletadas no início da estação chuvosa em uma área de floresta secundária (SEC) de cinco anos de idade e três níveis de dominância do babaçu (10, 50 e 70% de biomassa de babaçu) e a três distâncias (0; 2,5 e 4 m) de ilhas de babaçu isoladas em uma pastagem degradada (PAS), ambas com cinco repetições por tratamento. A densidade de esporos de FMA variou de 100 a 302 por grama de solo, sendo 56% maior em SEC do que em PAS. Dezesseis espécies de FMA foram identificadas, com predominância de Acaulospora (seis espécies) seguidos do gênero Glomus (três espécies). A riqueza destes fungos aumentou com o domínio da palmeira em SEC e reduziu com a distância das ilhas de babaçu em PAS. A taxa de colonização das raízes de babaçu foi superior nas áreas de SEC enquanto o PIM não apresentou diferenças entre os tratamentos. Nosso estudo aponta a uma forte associação micorrhízica da palmeira babaçu, um possível mecanismo central no seu sucesso ecológico em áreas degradadas.(AU)


Assuntos
Micorrizas/crescimento & desenvolvimento , Arecaceae/crescimento & desenvolvimento , Biodiversidade , Interações Microbianas , Ecossistema Amazônico , Brasil
18.
Acta amaz ; Acta amaz;48(4): 321-329, Oct.-Dec. 2018. map, tab, graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1455376

RESUMO

Babassu, Attalea speciosa (Arecaceae) is a ruderal palm native to Amazonia, which turned dominant in frequently burned lands throughout the arc of deforestation and other degraded lands, in extreme cases attaining complete dominance. This study investigated arbuscular mycorrhizal fungi (AMF) as one possible explanation for the outstanding ecological success of this exceptional palm. We explored the relationships between the babassu palm and native arbuscular mycorrhizal fungi and babassu effects on the AMF richness and mycorrhizal inoculum potential (MIP) in the eastern periphery of Amazonia. For this purpose, we sampled topsoil (0-20 cm) at the onset of the rainy season from a 5-year-old secondary forest regrowth (SEC) area with three levels of babassu dominance (sites with 10, 50 and 70% babassu biomass shares), and at three distances (0, 2.5 and 4 m) from isolated babassu patches within a degraded pasture (PAS), both with five replications per treatment. Glomerospore density varied from 100 to 302 per gram of soil, 56% higher in SEC than PAS. We identified a total of 16 AMF species, with dominance of Acaulospora (six species) followed by Glomus (three species). AMF richness increased with babassu dominance in SEC sites, and reduced with distance from babassu patches within the PAS. The colonization rate of babassu roots was higher in SEC than in PAS, whereas MIP was similar in both areas and without treatment differences. Our study points to strong mycorrhizal association of the babassu palm as a potential mechanism for its outstanding ecological success in degraded lands.


Babaçu, Attalea speciosa (Arecaceae) é uma palmeira ruderal nativa da Amazônia, dominante em terras frequentemente queimadas ao longo do arco de desmatamento e outras áreas degradadas, em casos extremos atingindo domínio completo. Este estudo investigou os fungos micorrízicos arbusculares (FMA) como possível explicação do sucesso ecológico desta palmeira. Nós exploramos as relações entre o babaçu e glomerosporos, efeitos do babaçu na riqueza destes fungos e o potencial do inóculo micorrízico (PIM) na periferia oriental da Amazônia. Amostras de solo (0-20 cm) foram coletadas no início da estação chuvosa em uma área de floresta secundária (SEC) de cinco anos de idade e três níveis de dominância do babaçu (10, 50 e 70% de biomassa de babaçu) e a três distâncias (0; 2,5 e 4 m) de ilhas de babaçu isoladas em uma pastagem degradada (PAS), ambas com cinco repetições por tratamento. A densidade de esporos de FMA variou de 100 a 302 por grama de solo, sendo 56% maior em SEC do que em PAS. Dezesseis espécies de FMA foram identificadas, com predominância de Acaulospora (seis espécies) seguidos do gênero Glomus (três espécies). A riqueza destes fungos aumentou com o domínio da palmeira em SEC e reduziu com a distância das ilhas de babaçu em PAS. A taxa de colonização das raízes de babaçu foi superior nas áreas de SEC enquanto o PIM não apresentou diferenças entre os tratamentos. Nosso estudo aponta a uma forte associação micorrhízica da palmeira babaçu, um possível mecanismo central no seu sucesso ecológico em áreas degradadas.


Assuntos
Arecaceae/crescimento & desenvolvimento , Biodiversidade , Interações Microbianas , Micorrizas/crescimento & desenvolvimento , Brasil , Ecossistema Amazônico
19.
Rev. argent. microbiol ; Rev. argent. microbiol;50(3): 301-310, set. 2018. ilus, tab
Artigo em Espanhol | LILACS | ID: biblio-977248

RESUMO

Los hongos micorrícicos arbusculares (HMA) de los ambientes áridos y semiáridos son importantes para el desarrollo de las plantas que crecen bajo estrés biótico y abiótico en áreas naturales o en agroecosistemas. Existe poca información sobre la diversidad temporal de los HMA en plantas perennes de ecosistemas áridos en el norte de México. En este estudiose evaluaron la colonización micorrícica y la diversidad temporal de los HMA en la rizosfera de Larrea tridentata, planta perenne de amplia distribución en el Desierto Chihuahuense. Se obtuvieron muestras de la rizosfera y de raíces de 15 plantas, en 3 fechas de muestreo del año 2015. Se encontró un total de 17 especies de HMA, distribuidas en 12 géneros y 7 familias dentro del phylum Glomeromycota. La especie más abundante fue Funneliformis geosporum. Esta especie pertenece a la familia Glomeraceae, la única que estuvo representada con varios géneros en L. tridentata. El mayor porcentaje de micorrización se presentó en febrero, con un 83,22%, en septiembre fue del 75,27% y en mayo del 65,27%. El muestreo realizado en febrero presentó el mayor número de especies (16), seguido por el de mayo (15) y el de septiembre (12). El análisis estadístico mostró diferencias significativas en el número de esporas entre los muestreos de febrero y los de mayo y septiembre.


Arbuscular mycorrhizal fungi (AMF) of arid and semiarid ecosystems are important for the development of plants that grow under biotic stress in wild or in agro-ecosystems. There is little information on the temporal diversity of these organisms in perennial plants from arid ecosystems in northern Mexico. On this study, the mycorrhizal colonization and the temporal diversity of AMF in the rhizosphere of Larrea tridentata, perennial plant abundant in the Chihuahuan Desert region were explored. Samples of the rhizosphere and roots of fifteen plants in each of the three sampling dates during the 2015 year were obtained. A total of 17 species of HMA belonging to 12 genera and 7 families within the phylum Glomeromycota in all three sampling dates were found. Funneliformis geosporum was the dominant species belonging to the family Glomeraceae which possess the highest genera number on L. tridentata.The highest mycorrhization percentage was in February with 83.22, followed by September and May with 75.27 and 65.27%, respectively. A maximum of 16 AM fungal species were isolated and identified from L. tridentata rhizosphere in February, 15 species in May and 12 species in September. Statistical analysis showed significant differences between sampling dates in the spores number.


Assuntos
Microbiologia do Solo , Micorrizas , Larrea , Biodiversidade , Esporos Fúngicos , Ecossistema , Raízes de Plantas , México
20.
J Environ Sci (China) ; 67: 330-343, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29778166

RESUMO

Arbuscular mycorrhizal fungi (AMF) are important during revegetation of mining sites, but few studies compared AMF community in revegetated sites with pristine adjacent ecosystems. The aim of this study was to assess AMF species richness in a revegetated iron-mining site and adjacent ecosystems and to relate AMF occurrence to soil chemical parameters. Soil samples were collected in dry and rainy seasons in a revegetated iron-mining site (RA) and compared with pristine ecosystems of forest (FL), canga (NG), and Cerrado (CE). AMF species were identified by spore morphology from field and trap cultures and by LSU rDNA sequencing using Illumina. A total of 62 AMF species were recovered, pertaining to 18 genera and nine families of Glomeromycota. The largest number of species and families were detected in RA, and Acaulospora mellea and Glomus sp1 were the most frequent species. Species belonging to Glomeraceae and Acaulosporaceae accounted for 42%-48% of total species richness. Total number of spores and mycorrhizal inoculum potential tended to be higher in the dry than in the rainy season, except in RA. Sequences of uncultured Glomerales were dominant in all sites and seasons and five species were detected exclusively by DNA-based identification. Redundancy analysis evidenced soil pH, organic matter, aluminum, and iron as main factors influencing AMF presence. In conclusion, revegetation of the iron-mining site seems to be effective in maintaining a diverse AMF community and different approaches are complementary to reveal AMF species, despite the larger number of species being identified by traditional identification of field spores.


Assuntos
Ecossistema , Recuperação e Remediação Ambiental , Micorrizas/fisiologia , Microbiologia do Solo , Biodiversidade , Florestas , Ferro , Mineração , Raízes de Plantas/microbiologia , Esporos Fúngicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA