RESUMO
Processes of water retention and movement and the hydraulic conductivity are altered in the rhizosphere. The aim of this study was to investigate the physical-hydric properties of soil aggregates in the rhizosphere of annual ryegrass (Lolium multiflorum) cropped in a Kandiudalfic Eutrudox, taking into account aspects related to soil aggregate stability. Soil aggregates from rhizosphere soil (RZS) and soil between plant rows (SBP) were used to determine soil water retention curves (SWRCs) and saturated hydraulic conductivity (Ksat). In addition, properties related to soil aggregate stability, such as water-dispersible clay, soil organic carbon (SOC), and microbial activity, were also assessed. The higher microbial activity observed in the RZS was facilitated by increased SOC and microbial activity, resulting in improved soil aggregation (less water-dispersible clay). For nearly all measured matric potentials, RZS had a higher water content than SBP. This was attributed to the stability of aggregates, increase in SOC content, and the root exudates, which improved soil water retention. The increase in total porosity in RZS was associated with improved soil aggregation, which prevents deterioration of the soil pore space and results in higher Ksat and hydraulic conductivity as a function of the effective relative saturation in RZS compared to SBP.
RESUMO
Invasive alien plant species (IAPS) have the ability to change the biochemical properties and the arbuscular mycorrhizal fungal (AMF) community structure in their rhizosphere. Organic acids, microbial activity, and AMF play a key role in the invader's spread and also has interactions with the soil chemical factors. Our aim here was to assess the rhizosphere's biochemical factors, AMF community composition, and soil chemical properties associated with Cryptostegia madagascariensis (IAPS) and Mimosa tenuiflora (endemic plant species) from the Brazilian Seasonal Dry Forest. The highest values of total glomalin (5.87 mg g-1 soil), root colonization (54.5%), oxalic and malic acids (84.21 and 3.01 µmol g-1 , respectively), microbial biomass C (mg kg-1 ), Na+ (0.080 cmolc kg-1 ), Ca2+ (7.04 cmolc kg-1 ), and soil organic carbon (4.59 g kg-1 ) were found in the rhizosphere of C. madagascariensis. We found dissimilarities on AMF community structure considering the studied plant species: (i) Racocetra coralloidea, Dentiscutata heterogama, Dentiscutata cerradensis, Gigaspora decipiens, and AMF's richness were highly correlated with the rhizosphere of M. tenuiflora; and (ii). The rhizosphere of C. madagascariensis was highly correlated with the abundance of Claroideoglomus etunicatum, Rhizoglomus aggregatum, Funneliformis mosseae, and Funneliformis geosporum. The results of our study highlight the importance of considering C. madagascariensis as potential hosts for AMF species from Glomerales, and a potential plant species that increase the bioavailability of exchangeable Na and Ca at semi-arid conditions.
Assuntos
Micobioma , Micorrizas , Raízes de Plantas/microbiologia , Brasil , Estações do Ano , Carbono , Solo/química , Plantas , Florestas , Microbiologia do SoloRESUMO
The availability of soil nutrients (especially phosphorus) and soil water strongly influence mycorrhizal symbiosis in forest ecosystems. The aim of this study was to evaluate the impact of litter removal and increased soil moisture availability on the spore density and mycorrhizal colonization of apogeotropic and non-apogeotropic roots of a secondary forest stand in eastern Amazonia. We determined the percentage of mycorrhizal colonization of apogeotropic and non-apogeotropic (0-10 cm soil depth) fine roots (diameter 2 mm), spore density, glomalin concentration, and soil phosphorus availability. Litter removal did not reduce soil phosphorus availability. The spore density was not affected by litter removal. In general, the variables varied on a seasonal basis, except the mycorrizal colonization of non-apogetropic roots and glomalin concentration, but were not affected by irrigation. Mechanical damage to the apogeotropic root system, inherent to the fortnightly litter removal, may have contributed to decrease mycorrhizal colonization of both apogeotropic and non-apogeotropic roots and, consequently, soil glomalin. Our results suggest that the reduction of soil cover may have negative impact over the fungus-plant symbiosis.(AU)
A disponibilidade de nutrientes, especialmente fósforo, e de água no solo influenciam fortemente a simbiose micorrízica em ecossistemas florestais. O objetivo do estudo foi avaliar o impacto da remoção de serapilheira e do aumento da disponibilidade de água no solo sobre a densidade de esporos e a colonização micorrízica em raízes apogeotrópicas e não-apogeotrópicas em floresta secundária na Amazônia oriental. Foram analisadas a porcentagem de colonização micorrízica de raízes finas (diâmetro ≤ 2 mm) apogeotrópicas e não-apogeotrópicas (presentes na camada de 0-10 cm do solo), a densidade de esporos, o teor de glomalina e a disponibilidade de fósforo no solo. A remoção de serapilheira não reduziu a disponibilidade de fósforo no solo. A densidade de esporos também não foi afetada pela remoção de serapilheira. De forma geral, as variáveis estudadas variaram sazonalmente, com exceção da colonização micorrízica em raízes não-apogeotrópicas e do teor de glomalina, mas não foram afetadas pela alteração na disponibilidade de água no solo decorrente da irrigação. Danos mecânicos ao sistema radicular apogeotrópico, inerentes à remoção quinzenal da serapilheira, devem ter contribuído para reduzir a colonização micorrízica em raízes apogeotrópicas e não-apogeotrópicas e, consequentemente, o teor de glomalina no solo. Os resultados deste estudo sugerem que a redução da cobertura do solo pode impactar negativamente a simbiose fungo-planta.(AU)
Assuntos
Micorrizas , Fósforo/análise , Florestas , Umidade do Solo , EsporosRESUMO
The availability of soil nutrients (especially phosphorus) and soil water strongly influence mycorrhizal symbiosis in forest ecosystems. The aim of this study was to evaluate the impact of litter removal and increased soil moisture availability on the spore density and mycorrhizal colonization of apogeotropic and non-apogeotropic roots of a secondary forest stand in eastern Amazonia. We determined the percentage of mycorrhizal colonization of apogeotropic and non-apogeotropic (0-10 cm soil depth) fine roots (diameter 2 mm), spore density, glomalin concentration, and soil phosphorus availability. Litter removal did not reduce soil phosphorus availability. The spore density was not affected by litter removal. In general, the variables varied on a seasonal basis, except the mycorrizal colonization of non-apogetropic roots and glomalin concentration, but were not affected by irrigation. Mechanical damage to the apogeotropic root system, inherent to the fortnightly litter removal, may have contributed to decrease mycorrhizal colonization of both apogeotropic and non-apogeotropic roots and, consequently, soil glomalin. Our results suggest that the reduction of soil cover may have negative impact over the fungus-plant symbiosis.
A disponibilidade de nutrientes, especialmente fósforo, e de água no solo influenciam fortemente a simbiose micorrízica em ecossistemas florestais. O objetivo do estudo foi avaliar o impacto da remoção de serapilheira e do aumento da disponibilidade de água no solo sobre a densidade de esporos e a colonização micorrízica em raízes apogeotrópicas e não-apogeotrópicas em floresta secundária na Amazônia oriental. Foram analisadas a porcentagem de colonização micorrízica de raízes finas (diâmetro ≤ 2 mm) apogeotrópicas e não-apogeotrópicas (presentes na camada de 0-10 cm do solo), a densidade de esporos, o teor de glomalina e a disponibilidade de fósforo no solo. A remoção de serapilheira não reduziu a disponibilidade de fósforo no solo. A densidade de esporos também não foi afetada pela remoção de serapilheira. De forma geral, as variáveis estudadas variaram sazonalmente, com exceção da colonização micorrízica em raízes não-apogeotrópicas e do teor de glomalina, mas não foram afetadas pela alteração na disponibilidade de água no solo decorrente da irrigação. Danos mecânicos ao sistema radicular apogeotrópico, inerentes à remoção quinzenal da serapilheira, devem ter contribuído para reduzir a colonização micorrízica em raízes apogeotrópicas e não-apogeotrópicas e, consequentemente, o teor de glomalina no solo. Os resultados deste estudo sugerem que a redução da cobertura do solo pode impactar negativamente a simbiose fungo-planta.
Assuntos
Esporos , Florestas , Fósforo/análise , Micorrizas , Umidade do SoloRESUMO
The flat pampas in the state of Santa Fe in Argentina have soils with high silt content, variable carbon content, and diverse degrees of structural degradation. Aggregate stability has been used as an indicator of the structural condition of the soil. This study aimed to quantify the effect of the addition of crop residues and root activity on the agents of aggregation and mechanisms of aggregate breakdown in soils with different carbon contents and textures cultivated under no-till. An experimental trial was conducted on a loamy soil (Typic Hapludoll, Santa Isabel series) and a silty soil (Typic Argiudoll, Esperanza series) under controlled conditions for 112 days with the following treatments: (i) with and without wheat plant growth and (ii) with and without addition of wheat residues. Soil structural stability by a method allowing for differentiation of aggregate breakdown by slaking, mechanical effect and microcracking, total organic carbon content, particulate organic carbon, glomalin and carbohydrate fractions was assessed. In general, the addition of residues and the presence of plant with active roots increased the presence of all aggregation agents and decreased aggregate breakdown processes in both soils. Soluble carbohydrates and proteins related to glomalin were the most important aggregating agents and their function was to reduce the magnitude of breakdown mechanisms, slaking and microcracking, evidencing a greater impact on the silty soil.(AU)
Assuntos
Análise do Solo , Solos Argilosos , CarboidratosRESUMO
The flat pampas in the state of Santa Fe in Argentina have soils with high silt content, variable carbon content, and diverse degrees of structural degradation. Aggregate stability has been used as an indicator of the structural condition of the soil. This study aimed to quantify the effect of the addition of crop residues and root activity on the agents of aggregation and mechanisms of aggregate breakdown in soils with different carbon contents and textures cultivated under no-till. An experimental trial was conducted on a loamy soil (Typic Hapludoll, Santa Isabel series) and a silty soil (Typic Argiudoll, Esperanza series) under controlled conditions for 112 days with the following treatments: (i) with and without wheat plant growth and (ii) with and without addition of wheat residues. Soil structural stability by a method allowing for differentiation of aggregate breakdown by slaking, mechanical effect and microcracking, total organic carbon content, particulate organic carbon, glomalin and carbohydrate fractions was assessed. In general, the addition of residues and the presence of plant with active roots increased the presence of all aggregation agents and decreased aggregate breakdown processes in both soils. Soluble carbohydrates and proteins related to glomalin were the most important aggregating agents and their function was to reduce the magnitude of breakdown mechanisms, slaking and microcracking, evidencing a greater impact on the silty soil.
Assuntos
Análise do Solo , Carboidratos , Solos ArgilososRESUMO
The accumulation of Cr in soil could be highly toxic to human health; therefore Cr soil distribution was studied in rhizosphere soils from Ricinus communis and Conium maculatum and bare soil (BS) from an industrial and urban area in Argentina. Total Cr, Cr(VI) and Cr(III) concentrations were determined in 3 soil fractions: total, extractable and associated to total-glomalin-related protein (T-GRSP). BS had the highest total Cr and total Cr(VI) concentrations. Total Cr(VI) concentration from both rhizosphere soils did not differ from the allowed value for residential area in Argentina (8 µg Cr(VI) g(-1) soil), while total Cr(VI) in BS was 1.8 times higher. Total Cr concentration in all the soils was higher than the allowed value (250 µg Cr g(-1) soil). Extractable and associated to T-GRSP Cr(VI) concentrations were below the detection limit. Cr(III) bound to T-GRSP was the highest in the BS. These findings are in agreement with a long term effect of glomalin in sequestrating Cr. In both plant species, total Cr was higher in root than in shoot and both species presented arbuscular mycorrhizal fungi (AMF). As far as we know, this is the first study that reports the presence of Cr in T-GRSP fraction of soil organic matter. These findings suggest that Cr mycorrhizostabilization could be a predominant mechanism used by R. communis and C. maculatum to diminish Cr soil concentration. Nevertheless, further research is needed to clarify the contribution of native AMF isolated from R. communis and C. maculatum rhizosphere to the Cr phytoremediation process.