Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.253
Filtrar
1.
Food Chem ; 463(Pt 3): 141603, 2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39405829

RESUMO

Legumes are consumed worldwide, are notable for their nutritional quality, however, contain certain non-nutritional compounds (NNCs) that can affect the absorption of nutrients, though these may exhibit bioactive properties. Various processing methods can modify the concentration of NNCs, including soaking and germination. These methods can be combined with other thermal, non-thermal, and bioprocessing treatments to enhance their efficiency. The efficacy of these methods is contingent upon the specific types of NNCs and legume in question. This work examines the effectiveness of these processing methods in terms of modifying the concentration of NNCs present in legumes as well as the potential use of emerging technologies, to enhance the level of NNCs modification in legumes. These technologies could increase the functional use of legume flours, potentially leading to new opportunities for incorporating legume-based ingredients in a range of culinary applications, thereby enhancing the diets of many individuals worldwide.

2.
Plants (Basel) ; 13(19)2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39409702

RESUMO

Chenopodium hircinum, the putative wild ancestor of quinoa, is a source of traits that could improve the tolerance of crop quinoa to high temperatures. However, seeds of C. hircinum have physiological dormancy (PD), which is an obstacle for plant propagation and use in breeding programs. We studied the intraspecific variability in morpho-anatomical traits of embryo covering structures and their association with PD. We also evaluated the effects of different dormancy-breaking treatments on PD alleviation and germination. Seeds were dispersed with a remnant perianth and a persistent pericarp that could be removed by scraping. The seed coat was formed by palisade cells impregnated with tannins, and the seed contained a thin layer of peripheral endosperm surrounding the embryo. In our investigation, the thickness of the pericarp (P) and/or seed coat (SC) varied among populations. Populations with higher P and/or SC thickness showed lower percentages of germination and water absorption. The combined dormancy-breaking treatment (bleach + perforated coverings + gibberellic acid) promoted dormancy release and increased germination. C. hircinum seeds showed non-deep physiological dormancy. Based on previous knowledge about quinoa, and our results, we conclude that embryo coverings, especially the seed coat, have an important role in dormancy control, imposing a mechanical restraint on radicle emergence.

3.
Ann Bot ; 2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39248329

RESUMO

BACKGROUND AND AIMS: Rock outcrop vegetation is distributed worldwide and hosts a diverse and unique flora that evolved under harsh environmental conditions. Unfortunately, seed ecology in such ecosystems has received little attention, especially regarding seed traits, germination responses to abiotic factors and the potential role of phylogenetic relatedness on such features Here, we provide the first quantitative and phylogenetically-informed synthesis of the seed functional ecology of Brazilian rock outcrop vegetation, with a particular focus on quartzitic and ironstone campo rupestre. METHODS: Using a database of functional trait data, we calculated the phylogenetic signal of seven seed traits for 371 taxa and tested whether they varied among growth forms, geographic distribution, and microhabitats. We also conducted meta-analyses that included 4,252 germination records for 102 taxa to assess the effects of light, temperature, and fire-related cues on the germination of campo rupestre species and explored how the aforementioned ecological groups and seed traits modulate germination responses. KEY RESULTS: All traits and germination responses showed a moderate-to-strong phylogenetic signal. Campo rupestre species responded positively to light and had maximum germination between 20-25 ºC. The effect of temperatures beyond this range was moderated by growth form, species geographic distribution, and microhabitat. Seeds exposed to heat shocks above 80 °C lost viability, but smoke accelerated germination. We found a moderating effect of seed mass for in responses to light and heat shocks, with larger, dormant seeds tolerating heat better but less sensitive to light. Species from xeric habitats evolved phenological strategies to synchronise germination during periods of increased soil water availability. CONCLUSIONS: Phylogenetic relatedness plays a major role in shaping seed ecology of Brazilian rock outcrop vegetation. Nevertheless, seed traits and germination responses varied significantly between growth forms, species geographic distribution and microhabitats, providing support to the regeneration niche hypothesis and the role of functional traits in shaping germination in these ecosystems.

4.
J Xenobiot ; 14(3): 1312-1331, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39311153

RESUMO

Chemical desiccation is widely used in agriculture to anticipate harvest and mitigate the effects of adverse environmental conditions. It is applied to both grains and seeds. Although this practice is widely used, there are still significant gaps in understanding the effects of different herbicide application times on seed quality and plant physiological responses. The objective of this study was to evaluate the effects of different herbicide application times on cowpea, focusing on seed quality, physiological responses, and biochemical composition, including chlorophylls, carotenoids, sugars, and proline, under nocturnal desiccation. In the first experiment, eight herbicides and two mixtures were applied at night: diquat, flumioxazin, diquat + flumioxazin, glufosinate ammonium, saflufenacil, carfentrazone, diquat + carfentrazone, atrazine, and glyphosate. All of the tested herbicides caused a reduction in normal seedling formation, with the diquat + carfentrazone combination resulting in 100% abnormal seedlings. A significant decrease in chlorophyll levels (chlorophyll a: 63.5%, chlorophyll b: 50.2%) was observed using diquat, which indicates damage to photosynthetic processes, while the carotenoid content increased. Total soluble sugars and proline were also negatively impacted, reflecting physiological stress and metabolic changes in seedlings. In the second experiment, three application times were tested with diquat, diquat + flumioxazin, and diquat + carfentrazone. Nocturnal application showed the most significant reduction in chlorophyll levels and increased carotenoid levels. Application at noon and late afternoon also significantly changed the soluble sugar and proline levels. These results indicate that the herbicide application time directly influences the seeds' physiological quality.

5.
J Toxicol Environ Health A ; 87(24): 989-998, 2024 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-39302011

RESUMO

Aluminum (Al) may be beneficial to crops, but in excess becomes detrimental to the germination and initial development of seedlings. The main determining indicators are the type of crop and exposure duration. The aim of this study was to examine the influence of Al and of UV-C light on the germination and initial growth of white oats. Seeds were sown on germitest paper in a solution of 100, 200, 300, 400, or 500 mg/L of aluminum chloride and kept in a germination chamber at 20°C for a 12-hr photoperiod. Germination and seedling growth parameters were determined after 5 and 10 days. The seeds were also exposed to two doses of UV-C (0.85 and 3.42 kJ m-2) under aluminum chloride stress (200 mg/L). Data demonstrated that treatment with aluminum chloride significantly decrease in germination at 200 mg/L and total seedling length at 100 mg/L. Exposure of seeds to UV-C light under excess Al (200 mg/L) did not show a significant effect on germination and growth compared to control (non-irradiated). Results indicated that exposure to high concentration of Al in the medium adversely altered germination and initial growth of white oat seedlings. Although UV-C light alone was not detrimental to the germination process, treatment with UV-C light also failed to mitigate the toxic effects of Al.


Assuntos
Alumínio , Avena , Germinação , Plântula , Sementes , Raios Ultravioleta , Germinação/efeitos dos fármacos , Germinação/efeitos da radiação , Avena/crescimento & desenvolvimento , Avena/efeitos dos fármacos , Avena/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Sementes/efeitos da radiação , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Plântula/crescimento & desenvolvimento , Plântula/efeitos dos fármacos , Plântula/efeitos da radiação , Alumínio/toxicidade , Cloreto de Alumínio/toxicidade
6.
Life (Basel) ; 14(9)2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39337946

RESUMO

The aim of this study was to assess the influence of hydrogel and zinc oxide nanoparticles on quinoa germination and establishment. Various doses of a commercial potassium-based hydrogel (0, 5, 7, and 9 g), each dissolved in one liter of rainwater, were applied. Additionally, 1.5 g of zinc oxide nanoparticles (ZnO-NP) and pre-crushed nitrogen fertilizer, at a rate of 1.6 kg/ha, were added to the solution to achieve a homogeneous mixture. Following the application of hydrogel in the 10-linear-meter rows corresponding to each treatment area in every block, 25 seeds per linear meter of the "Blanca de Juli" quinoa cultivar were sown with a 4 cm spacing between the seeds. Subsequently, a thin layer of soil, approximately 0.5 cm thick, was used to cover the seeds. Ten seedlings were randomly selected and labeled for subsequent evaluations. The experimental design employed in this research was a completely randomized block design. The collected data underwent an analysis of variance, and the means of all the treatments were compared using Tukey's test with a 5% probability. Height and diameter evaluations of the plant neck were conducted every 45 days. The doses used in this study (5, 7, and 9 g of hydrogel per liter of water) significantly enhanced seed germination and increased the number of plants per linear meter (from 82.00 to 90.33) compared to the control dose without hydrogel (14.66), which resulted in an average of one plant per linear meter.

7.
Plant Biol (Stuttg) ; 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39265058

RESUMO

Discontinuous hydration and dehydration (HD) cycles refer to controlled imbibition followed by dehydration before seed germination. Here, we investigated whether the level of imbibition before HD cycles affects the physiology of Tabebuia heterophylla seeds and seedlings. Seeds were imbibed for 10 h (T1; phase I of imbibition) or 35 h (T2; phase II), dehydrated, and progressively rehydrated one to four times (HD cycles). Germination and biochemical parameters (membrane integrity; total soluble, reducing, and nonreducing (NRS) sugars; proteins, amino acids, proline, H2O2, catalase, ascorbate peroxidase, and glutathione reductase activity) were quantified at the last rehydration step of each cycle. Biometric and biochemical parameters (including pigments) were analysed in seedlings 60 days after germination. HD cycles at T1 led to reduced seed germination and greater plasma membrane damage, higher enzyme activity (catalase and glutathione reductase) and accumulation of NRS, total amino acids, and proline compared to the controls and T2 treatment. Cellular damage became more severe with more HD cycles. HD cycles at T2 synchronized germination regardless of the number of cycles and also had a priming effect. T2 seeds had less NRS, total amino acids, and proline content than T1. HD cycles at T1 produced seedlings with higher carotenoid and total chlorophyll content than controls and T2, while seedlings from HD cycles at T2 had higher amounts of osmoprotectants. HD cycles at T2 benefited seeds and seedlings more than at T1. This suggests that the physiological and biochemical effects of HD cycles in seeds modulate seedling plasticity, depending on water availability, potentially promoting increased tolerance to recurrent droughts that will be intensified with ongoing climate changes.

8.
Chemosphere ; 364: 143080, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39146989

RESUMO

Nanotechnology has brought significant advancements to agriculture through the development of engineered nanomaterials (ENPs). Silver nanoparticles (AgNPs) capped with polysaccharides have been applied in agricultural diagnostics, crop pest management, and seed priming. Hyaluronic acid (HA), a natural polysaccharide with bactericidal properties, has been considered a growth regulator for plant tissues and an inducer of systemic resistance against plant diseases. Additionally, HA has been employed as a stabilizing agent for AgNPs. This study investigated the synthesis and effects of hyaluronic acid-stabilized silver nanoparticles (HA-AgNPs) as a seed priming agent on lettuce (Lactuca sativa L.) seed germination. HA-AgNPs were characterized using several techniques, exhibiting spherical morphology and good colloidal stability. Germination assays conducted with 0.1, 0.04, and 0.02 g/L of HA-AgNPs showed a concentration-dependent reduction in seed germination. Conversely, lower concentrations of HA-AgNPs significantly increased germination rates, survival, tolerance indices, and seed water absorption compared to silver ions (Ag+). SEM/EDS indicated more significant potential for HA-AgNPs internalization compared to Ag+. Therefore, these findings are innovative and open new avenues for understanding the impact of Ag+ and HA-AgNPs on seed germination.


Assuntos
Germinação , Ácido Hialurônico , Lactuca , Nanopartículas Metálicas , Sementes , Prata , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Prata/química , Prata/toxicidade , Prata/farmacologia , Germinação/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia
9.
Plants (Basel) ; 13(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38999612

RESUMO

Coffee (Coffea arabica) cultivation is vital to the global economic, social and cultural life of farmers. However, senescent and disease-susceptible plantations affect coffee productivity. Therefore, it is crucial to improve biotechnological strategies such as micropropagation to increase the number of plants for replanting. In this study, the dark condition (T1) and different light qualities (T0-white light 400-700 nm; T2-red light 660 nm and T3-blue light 460 nm) were evaluated to optimize the in vitro propagation of 4 and 9 month-old coffee seeds. The results showed that red light had the highest percentage, an outstanding germination rate index, which may suggest that in the case of coffee seeds could be involved phytochromes that promote germination in a red light quality. In summary, the ideal conditions for in vitro micropropagation of coffee are under white and red light condition.

10.
Sci Rep ; 14(1): 17008, 2024 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-39043896

RESUMO

Flavonoids are compounds that result from the secondary metabolism of plants and play a crucial role in plant development and mitigating biotic and abiotic stresses. The highest levels of flavonoids are found in legumes such as soybean. Breeding programs aim to increase desirable traits, such as higher flavonoid contents and vigorous seeds. Soybeans are one of the richest sources of protein in the plant kingdom and the main source of flavonoid derivatives for human health. In view of this, the hypothesis of this study is based on the possibility that the concentration of isoflavones in soybean seeds contributes to the physiological quality of the seeds. The aim of this study was to analyze the content of flavonoids in soybean genotypes and their influence on the physiological quality of the seeds. Seeds from thirty-two soybean genotypes were obtained by carrying out a field experiment during the 2021/22 crop season. The experimental design was randomized blocks with four replications and thirty-two F3 soybean populations. The seeds obtained were subjected to germination, first germination counting, electrical conductivity and tetrazolium vigor and viability tests. After drying and milling the material from each genotype, liquid chromatography analysis was carried out to obtain flavonoids, performed at UPLC level. Data were submitted to analysis of variance and, when significant, the means were compared using the Scott-Knott test at 5% probability. The results found here show the occurrence of genotypes with higher amounts of flavonoids when compared to their peers. The flavonoid FLVD_G2 had the highest concentration and differed from the others. Thus, we can assume that the type and concentration of flavonoids does not influence the physiological quality of seeds from different soybean genotypes, but it does indirectly contribute to viability and vigor, since the genotypes with the highest FLVD_G2 levels had better FGC values. The findings indicate that there is a difference between the content of flavonoids in soybean genotypes, with a higher content of genistein. The content of flavonoids does not influence the physiological quality of seeds, but contributes to increasing viability and vigor.


Assuntos
Flavonoides , Genótipo , Germinação , Glycine max , Sementes , Glycine max/genética , Glycine max/metabolismo , Glycine max/crescimento & desenvolvimento , Sementes/genética , Flavonoides/análise , Flavonoides/metabolismo , Isoflavonas/análise , Isoflavonas/metabolismo
11.
Am J Primatol ; 86(9): e23665, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39010711

RESUMO

The dietary ecology of a species can provide information on habitat requirements, food resources, and trophic interactions, important to guide conservation efforts of wildlife populations in endangered habitats. In this study, we investigated the dietary ecology of bearded capuchin monkeys (Sapajus libidinosus) in Brasilia National Park, in the endangered Cerrado biome of central Brazil. To obtain diet composition and evaluate the role of these primates as seed dispersers of local tree species, fecal sample collections and feeding observations were performed for a 7-month period. To determine whether seeds germinated better after passing through a primate gut, we conducted germination trials with (i) pulped seeds from trees, (ii) depulped seeds from trees, (iii) seeds from feces planted with feces, and (iv) seeds from feces planted without feces. During experimental procedures, 7308 seeds from 8 families and 10 species were planted. We found that S. libidinosus spent more time feeding on fruits than on any other food item and the diet consisted of 33 plant species from 21 families. However, 20% of their diet consisted of anthropic food. Most seeds planted with feces germinated faster compared to seeds in other experimental treatments, suggesting that passing through the gut and being deposited with fecal material is advantageous. The bearded capuchins also defecated many medium- (5 species) and large-sized (2 species) seeds that may be inaccessible to smaller arboreal frugivores. The results obtained emphasize the important role of bearded capuchins as seed dispersers for the maintenance and conservation of the endangered Cerrado biome.


Assuntos
Cebinae , Dieta , Fezes , Dispersão de Sementes , Sementes , Animais , Dieta/veterinária , Brasil , Cebinae/fisiologia , Parques Recreativos , Comportamento Alimentar , Germinação , Masculino , Espécies em Perigo de Extinção , Feminino
12.
Plant J ; 119(4): 2021-2032, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38963754

RESUMO

DNA glycosylases initiate the base excision repair (BER) pathway by catalyzing the removal of damaged or mismatched bases from DNA. The Arabidopsis DNA glycosylase methyl-CpG-binding domain protein 4 like (MBD4L) is a nuclear enzyme triggering BER in response to the genotoxic agents 5-fluorouracil and 5-bromouracil. To date, the involvement of MBD4L in plant physiological processes has not been analyzed. To address this, we studied the enzyme functions in seeds. We found that imbibition induced the MBD4L gene expression by generating two alternative transcripts, MBD4L.3 and MBD4L.4. Gene activation was stronger in aged than in non-aged seeds. Seeds from mbd4l-1 mutants displayed germination failures when maintained under control or ageing conditions, while 35S:MBD4L.3/mbd4l-1 and 35S:MBD4L.4/mbd4l-1 seeds reversed these phenotypes. Seed nuclear DNA repair, assessed by comet assays, was exacerbated in an MBD4L-dependent manner at 24 h post-imbibition. Under this condition, the BER genes ARP, APE1L, and LIG1 showed higher expression in 35S:MBD4L.3/mbd4l-1 and 35S:MBD4L.4/mbd4l-1 than in mbd4l-1 seeds, suggesting that these components could coordinate with MBD4L to repair damaged DNA bases in seeds. Interestingly, the ATM, ATR, BRCA1, RAD51, and WEE1 genes associated with the DNA damage response (DDR) pathway were activated in mbd4l-1, but not in 35S:MBD4L.3/mbd4l-1 or 35S:MBD4L.4/mbd4l-1 seeds. These results indicate that MBD4L is a key enzyme of a BER cascade that operates during seed imbibition, whose deficiency would cause genomic damage detected by DDR, generating a delay or reduction in germination.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , DNA Glicosilases , Reparo do DNA , Germinação , Sementes , Sementes/genética , Sementes/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , DNA Glicosilases/metabolismo , DNA Glicosilases/genética , Regulação da Expressão Gênica de Plantas , Dano ao DNA
13.
Plant Biol (Stuttg) ; 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38967306

RESUMO

Seed water imbibition is critical to seedling establishment in tropical forests. The seeds of the neotropical tree Hymenaea courbaril have no oil reserves and have been used as a model to study storage cell wall polysaccharide (xyloglucan - XyG) mobilization. We studied pathways of water imbibition in Hymenaea seeds. To understand seed features, we performed carbohydrate analysis and scanning electron microscopy. We found that the seed coat comprises a palisade of lignified cells, below which are several cell layers with cell walls rich in pectin. The cotyledons are composed mainly of storage XyG. From a single point of scarification on the seed surface, we followed water imbibition pathways in the entire seed using fluorescent dye and NMRi spectroscopy. We constructed composites of cellulose with Hymenaea pectin or XyG. In vitro experiments demonstrated cell wall polymer capacity to imbibe water, with XyG imbibition much slower than the pectin-rich layer of the seed coat. We found that water rapidly crosses the lignified layer and reaches the pectin-rich palisade layer so that water rapidly surrounds the whole seed. Water travels very slowly in cotyledons (most of the seed mass) because it is imbibed in the XyG-rich storage walls. However, there are channels among the cotyledon cells through which water travels rapidly, so the primary cell walls containing pectins will retain water around each storage cell. The different seed tissue dynamic interactions between water and wall polysaccharides (pectins and XyG) are essential to determining water distribution and preparing the seed for germination.

14.
Plant Foods Hum Nutr ; 79(3): 551-562, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38976203

RESUMO

Andean crops such as quinoa, amaranth, cañihua, beans, maize, and tarwi have gained interest in recent years for being gluten-free and their high nutritional values; they have high protein content with a well-balanced essential amino acids profile, minerals, vitamins, dietary fiber, and antioxidant compounds. During the germination bioprocess, the seed metabolism is reactivated resulting in the catabolism and degradation of macronutrients and some anti-nutritional compounds. Therefore, germination is frequently used to improve nutritional quality, protein digestibility, and availability of certain minerals and vitamins; furthermore, in specific cases, biosynthesis of new bioactive compounds could occur through the activation of secondary metabolic pathways. These changes could alter the technological and sensory properties, such as the hardness, consistency and viscosity of the formulations prepared with them. In addition, the flavor profile may undergo improvement or alteration, a critical factor to consider when integrating sprouted grains into food formulations. This review summarizes recent research on the nutritional, technological, functional, and sensory changes occur during the germination of Andean grains and analyze their potential applications in various food products.


Assuntos
Produtos Agrícolas , Germinação , Valor Nutritivo , Produtos Agrícolas/química , Produtos Agrícolas/crescimento & desenvolvimento , Sementes/química , Sementes/crescimento & desenvolvimento , Zea mays/química , Zea mays/crescimento & desenvolvimento , Humanos , Chenopodium quinoa/química , Paladar , Fibras na Dieta/análise , Amaranthus/química , Amaranthus/crescimento & desenvolvimento , Minerais/análise , Proteínas Alimentares/análise , Fabaceae/química
15.
J Toxicol Environ Health A ; 87(18): 719-729, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-38884257

RESUMO

Corn is the second most cultivated crop in Brazil, the number-one country in pesticide consumption. Chemical control of weeds is performed using herbicides such as S-metolachlor with pre- and post-emergence action and thus the toxicity of herbicides constitutes a matter of great concern. The present investigation aimed to examine the effects of an S-metolachlor-based herbicide on Lactuca sativa L. (lettuce) and Zea mays L. (maize) utilizing various bioassays. The test solutions were prepared from commercial products containing the active ingredient. Seeds from the plant models were exposed in petri dishes and maintained under biochemical oxygen demand (BOD) at 24°C. Distilled water was negative and aluminium positive control. Macroscopic analyses (germination and growth) were conducted for both plant species, and microscopic analysis (cell cycle and chromosomal alterations) were performed for L. sativa root tip cells. Detrimental interference of S-metolachlor-based herbicide was noted with lettuce for all parameters tested reducing plant germination by over 50% and the germination speed by over 45% and showing a significant decrease in mitotic index, from 16.25% to 9,28% even on the lowest concentration tested. In maize, there was no significant interference in plant germination; however, speed of germination was significantly hampered, reaching a 51.22% reduction for the highest concentration tested. Data demonstrated that the herbicide was toxic as evidenced by its phyto- and cytotoxicity in L. sativa L. and Z. mays L.


Assuntos
Acetamidas , Herbicidas , Lactuca , Zea mays , Zea mays/efeitos dos fármacos , Herbicidas/toxicidade , Lactuca/efeitos dos fármacos , Lactuca/crescimento & desenvolvimento , Acetamidas/toxicidade , Germinação/efeitos dos fármacos , Sementes/efeitos dos fármacos , Sementes/crescimento & desenvolvimento
16.
J Exp Bot ; 75(14): 4415-4427, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38877792

RESUMO

Major constituents of the plant cell walls are structural proteins that belong to the hydroxyproline-rich glycoprotein (HRGP) family. Leucine-rich repeat extensin (LRX) proteins contain a leucine-rich domain and a C-terminal domain with repetitive Ser-Pro3-5 motifs that are potentially to be O-glycosylated. It has been demonstrated that pollen-specific LRX8-LRX11 from Arabidopsis thaliana are necessary to maintain the integrity of the pollen tube cell wall during polarized growth. In HRGPs, including classical extensins (EXTs), and probably in LRXs, proline residues are converted to hydroxyproline by prolyl-4-hydroxylases (P4Hs), thus defining novel O-glycosylation sites. In this context, we aimed to determine whether hydroxylation and subsequent O-glycosylation of Arabidopsis pollen LRXs are necessary for their proper function and cell wall localization in pollen tubes. We hypothesized that pollen-expressed P4H4 and P4H6 catalyze the hydroxylation of the proline units present in Ser-Pro3-5 motifs of LRX8-LRX11. Here, we show that the p4h4-1 p4h6-1 double mutant exhibits a reduction in pollen germination rates and a slight reduction in pollen tube length. Pollen germination is also inhibited by P4H inhibitors, suggesting that prolyl hydroxylation is required for pollen tube development. Plants expressing pLRX11::LRX11-GFP in the p4h4-1 p4h6-1 background show partial re-localization of LRX11-green fluorescent protein (GFP) from the pollen tube tip apoplast to the cytoplasm. Finally, immunoprecipitation-tandem mass spectrometry analysis revealed a decrease in oxidized prolines (hydroxyprolines) in LRX11-GFP in the p4h4-1 p4h6-1 background compared with lrx11 plants expressing pLRX11::LRX11-GFP. Taken together, these results suggest that P4H4 and P4H6 are required for pollen germination and for proper hydroxylation of LRX11 necessary for its localization in the cell wall of pollen tubes.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Tubo Polínico , Prolil Hidroxilases , Arabidopsis/metabolismo , Arabidopsis/genética , Hidroxilação , Tubo Polínico/crescimento & desenvolvimento , Tubo Polínico/metabolismo , Tubo Polínico/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Prolil Hidroxilases/metabolismo , Prolil Hidroxilases/genética , Parede Celular/metabolismo
17.
Food Chem ; 458: 140196, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38943953

RESUMO

The research aimed to assess the effects of incorporating germinated Lupinus angustifolius flour into corn extrudates for different periods (3, 5, and 7 days), focusing on starch digestibility, morphological structure, thermal, and pasting properties. Extrudate with germinated lupinus flour for 7 days (EG7) significantly increased the content of slowly digestible starch up to 10.56% (p < 0.05). Crystallinity increased up to 20% in extrudates with germinated flour compared to extrudates with ungerminated flour (EUG), observing changes at the molecular level by FTIR that impact the thermal and pasting properties. X-ray diffraction revealed angles of 2θ = 11.31, 16.60, 19.91, and 33.04 as a result of the germination and extrusion processes. Microstructural analysis indicated starch-protein interactions influencing changes in calorimetry, viscosity, X-ray diffraction, and digestibility. PCA allowed establishing that the addition of germinated flours significantly affected the properties and microstructural characteristics of extruded products, potentially affecting digestibility and nutritional quality.


Assuntos
Digestão , Germinação , Lupinus , Amido , Difração de Raios X , Zea mays , Zea mays/química , Zea mays/crescimento & desenvolvimento , Zea mays/metabolismo , Lupinus/química , Lupinus/metabolismo , Lupinus/crescimento & desenvolvimento , Amido/química , Amido/metabolismo , Farinha/análise , Viscosidade , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/metabolismo , Manipulação de Alimentos
18.
Plant Biol (Stuttg) ; 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38940062

RESUMO

In fire-prone ecosystems, plant traits are influenced by the fire regime, thus reproduction and establishment can be altered by this disturbance. Changes in fire frequency and history can therefore influence seed and germination traits. We investigated the effects of short-term fire exclusion on seed and germination traits of species from tropical open savannas. Seeds from 27 species were collected from two areas with distinct fire histories: recently and frequently burned (RB) or unburned for 5 to 7 years (E). Seeds from both areas underwent germination trials under optimal conditions for 30 days. Also, 10 species were exposed to high temperature treatments (100 or 200 °C) and seed and germination traits measured. Comparisons were then made for each trait, analysing each species separately, between the two areas. Approximately 85% of species studied had at least one of their germination traits altered in the RB area compared to the E area. Clear differences included lower viability and faster germination in seeds from RB areas. Seed traits of 70% of measured species differed between the two areas. Our results show species-specific trait response to different fire histories. For example, faster germination and lower viability of seeds from RB plots suggest selection for faster maturing individuals and differences in resourcing, respectively, under a regime of frequent fire. This study provides insights into fire effects on regeneration responses of tropical savanna species and also points to the need for more studies evaluating the effects of fire history on seed traits.

19.
Environ Sci Pollut Res Int ; 31(29): 41953-41963, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38856851

RESUMO

Various plant species can be selected for environmental testing, including pearl millet (Pennisetum glaucum (L.) R. Br), a globally significant cereal crop. This study aims to assess millet's suitability as a species for ecotoxicological tests, examining (1) germination and initial development dynamics, (2) the minimum seed quantity for reliable sampling, (3) optimal experimental design with replication numbers, (4) suitability of positive control, and (5) the effectiveness of the protocol in evaluating toxic effects of environmental pollutants. Millet exhibited rapid and uniform germination as well as consistent initial seedling development. To establish the minimum number of seeds required for reliable experimentation, germination, and seedling growth were compared across plots containing 10, 25, and 50 seeds. Consequently, 10 seeds per plot were chosen for subsequent experiments to reduce labor and costs while maintaining reliability. To validate the selected experimental design, and to establish a positive control for assays, aluminum was used as a toxic element at concentrations ranging from 10-2 to 10-6 M. While aluminum did not affect the final percentage of germinated seeds, it did exhibit an impact on the Germination Speed Index (GSI). Significant differences in root and aerial growth, and with fresh weight, were observed. The 10-3M concentration was chosen as the positive control as the 10-2 concentration showed extreme toxicity. To assess the applicability of the established protocol in determining the toxic effects of environmental pollutants, millet roots were exposed to the toxic agents atrazine, cadmium, methyl methane sulfonate (MMS), and Spent pot liner (SPL). Millet demonstrated sensitivity and efficiency in response to these tests. In conclusion, millet proves to be an effective species for the toxicological risk assessment of environmental pollutants.


Assuntos
Ecotoxicologia , Germinação , Pennisetum , Pennisetum/efeitos dos fármacos , Germinação/efeitos dos fármacos , Plântula/efeitos dos fármacos , Plântula/crescimento & desenvolvimento
20.
Braz J Microbiol ; 55(3): 2527-2538, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38862737

RESUMO

Fusarium verticillioides causes significant decrease in corn yield and quality, and produces fumonisins, which represent a serious risk to human and animal health. Bacillus species can be an effective and environmentally friendly alternative for F. verticillioides biological control. In this study, some properties of cell-free supernatants (CFSs) of two Bacillus spp. identified as Bacillus subtilis (NT1, NT2) as well as the antifungal effect against F. verticillioides 97L were evaluated. B. subtilis NT1 and NT2 were isolated from commercially available fermented whole soybeans (Natto). Antifungal activity was observed in both CFSs of B. subtilis isolates (50-59 mm) obtained by co-culture suggesting that antifungal compound production depends on interaction between bacteria and fungi. Cell-free supernatants from the two B. subtilis isolates inhibited mycelial growth (77%-94%) and conidial germination (22%-74%) of F. verticillioides 97L. In addition, CFSs caused significant morphological changes such as distorted and collapsed hyphae with wrinkled surfaces and the presence of a large amount of extracellular material compared to the control without CFSs. Both B. subtilis isolates (NT1 and NT2) produced extracellular proteases, biosurfactants and polar low molecular weight compounds that probably act synergistically and may contribute to the antifungal activity. Antifungal compounds showed heat and pH stability and resistance to proteolytic enzymes. Furthermore, antifungal compounds showed high polarity, high affinity to water and a molecular weight less than 10 kDa. These results indicated that the two B. subtilis (NT1 and NT2) have potential as biocontrol agents for F. verticillioides.


Assuntos
Antifúngicos , Bacillus subtilis , Fusarium , Bacillus subtilis/metabolismo , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Fusarium/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Doenças das Plantas/microbiologia , Doenças das Plantas/prevenção & controle , Glycine max/microbiologia , Zea mays/microbiologia , Esporos Fúngicos/crescimento & desenvolvimento , Esporos Fúngicos/efeitos dos fármacos , Antibiose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA